Juan Sancho

Learn More
A novel approach for fibre distributed sensing is proposed, conceived to match as closely as possible to an ideally responding distributed sensor. It is demonstrated that it can be actually realized using fibre Bragg gratings of extremely low index contrast and continuously printed over the entire fibre length. The concept is experimentally validated over a(More)
A new technique to investigate the spatial distribution of the reflection spectrum along fabricated long weak fiber Bragg gratings (FBG) is experimentally demonstrated, together with its potential applications for distributed fiber sensing and broadband signal processing. A short pulsed coherent light signal is launched into a FBG and the signal frequency(More)
During the last years, Wireless Sensor Networks (WSN) have been deployed at an accelerated rate. The complexity and low-power requirements of these networks have also been growing. Therefore, WSN developers are beginning to require efficient methodologies for network simulation and embedded SW performance analysis. These tools should also include security(More)
—Most of the IoT applications are distributed in nature generating large data streams which have to be analyzed in near real-time. Solutions based on Complex Event Processing (CEP) have the potential to extract high-level knowledge from these data streams but the use of CEP for distributed IoT applications is still in early phase and involves many(More)
In this work, we apply a recent technique for the generation of stimulated Brillouin scattering (SBS) dynamic gratings that are both localized and stationary to realize high-resolution distributed temperature sensing. The gratings generation method relies on the phase modulation of two pump waves by a common pseudo-random bit sequence (PRBS), with a symbol(More)
  • 1