Juan R. Perilla

Learn More
Retroviral capsid proteins are conserved structurally but assemble into different morphologies. The mature human immunodeficiency virus-1 (HIV-1) capsid is best described by a 'fullerene cone' model, in which hexamers of the capsid protein are linked to form a hexagonal surface lattice that is closed by incorporating 12 capsid-protein pentamers. HIV-1(More)
Adenylate kinase (AdK), a phosphotransferase enzyme, plays an important role in cellular energy homeostasis. It undergoes a large conformational change between an open and a closed state, even in the absence of substrate. We investigate the apo-AdK transition at the atomic level both with free-energy calculations and with our new dynamic importance sampling(More)
Seizures are increasingly understood to arise from epileptogenic networks across which ictal activity is propagated and sustained. In patients undergoing invasive monitoring for epilepsy surgery, high frequency oscillations have been observed within the seizure onset zone during both ictal and interictal intervals. We hypothesized that the patterns by which(More)
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this(More)
There is an increasing dataset of solved biomolecular structures in more than one conformation and increasing evidence that large-scale conformational change is critical for biomolecular function. In this article, we present our implementation of a dynamic importance sampling (DIMS) algorithm that is directed toward improving our understanding of important(More)
Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in(More)
Defining the molecular interaction between Gag proteins in an assembled hexagonal lattice of immature retrovirus particles is crucial for elucidating the mechanisms of virus assembly and maturation. Recent advances in cryo-electron microscopy have yielded subnanometer structural information on the morphology of immature Gag lattices, making computational(More)
Retroviruses are pathogens characterized by their ability to incorporate viral DNA into a host cell’s genome. Retroviruses like Rous Sarcoma Virus (RSV) infect cells during mitosis, when the chromatin is exposed to the cytoplasm. Conversely, the genus of lentiviruses, like the human immunodeficiency virus (HIV), have evolved to infect non-dividing cells(More)
Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond(More)
The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We(More)