Juan R Martínez-Morales

Learn More
Patterning of the vertebrate eye appears to be controlled by the mutual regulation and the progressive restriction of the expression domains of a number of genes initially co-expressed within the eye anlage. Previous data suggest that both Otx1 and Otx2 might contribute to the establishment of the different eye territories. Here, we have analysed the ocular(More)
During development of the cerebellum, Sonic hedgehog (SHH) is expressed in migrating and settled Purkinje neurons and is directly responsible for proliferation of granule cell precursors in the external germinal layer. We have previously demonstrated that SHH interacts with vitronectin in the differentiation of spinal motor neurons. Here, we analysed(More)
The retina pigment epithelium (RPE) is a highly specialised epithelium that serves as a multifunctional and indispensable component of the vertebrate eye. Although a great deal of attention has been paid to its transdifferentiation capabilities and its ancillary functions in neural retina development, little is known about the molecular mechanisms that(More)
The developing chick retina undergoes at least two discrete periods of programmed cell death. The earlier period coincides with the main onset of neuron birth and migration (embryonic day 5-7), whereas the latter one corresponds to the well-documented process of retinal ganglion cell death following tectal innervation (embryonic day 10-14; Rager, G. H.(More)
The retina pigment epithelium (RPE) is fundamental for the development and function of the vertebrate eye. Molecularly, the presumptive RPE can be identified by the early expression of two transcription factors, Mitf and Otx. In mice deficient for either gene, RPE development is impaired with loss of melanogenic gene expression, raising the possibility that(More)
The optic disc develops at the interface between optic stalk and retina, and enables both the exit of visual fibres and the entrance of mesenchymal cells that will form the hyaloid artery. In spite of the importance of the optic disc for eye function, little is known about the mechanisms that control its development. Here, we show that in mouse embryos,(More)
Although the vertebrate retina is a well-studied paradigm for organogenesis, the morphogenetic mechanisms that carve the architecture of the vertebrate optic cup remain largely unknown. Understanding how the hemispheric shape of an eye is formed requires addressing the fundamental problem of how individual cell behaviour is coordinated to direct epithelial(More)
Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show(More)
The extracellular matrix protein vitronectin and its mRNA are present in the embryonic chick notochord, floor plate and in the ventral neural tube at the time position of motor neuron generation. When added to cultures of neural tube explants of developmental stage 9, vitronectin promotes the generation of motor neurons in the absence of either notochord or(More)
Investigating the architecture of gene regulatory networks (GRNs) is essential to decipher the logic of developmental programs during embryogenesis. In this study we present an upstream survey approach, termed trans-regulation screen, to comprehensively identify the regulatory input converging on endogenous regulatory sequences. Our dual luciferase-based(More)