Learn More
BACKGROUND AND PURPOSE Hemodynamic factors are thought to play an important role in the initiation, growth, and rupture of cerebral aneurysms. This report describes a pilot clinical study of the association between intra-aneurysmal hemodynamic characteristics from computational fluid dynamic models and the rupture of cerebral aneurysms. METHODS A total of(More)
Hemodynamic factors are thought to be implicated in the progression and rupture of intracranial aneurysms. Current efforts aim to study the possible associations of hemodynamic characteristics such as complexity and stability of intra-aneurysmal flow patterns, size and location of the region of flow impingement with the clinical history of aneurysmal(More)
Detailed knowledge of the hemodynamic conditions in normal cerebral arteries is important for a better understanding of the underlying mechanisms leading to the initiation and progression of cerebrovascular diseases. Information about the baseline values of hemodynamic variables such as wall shear stresses is necessary for comparison to pathological(More)
Atherosclerotic disease of the renal artery can lead to reduction in arterial caliber and ultimately to conditions including renovascular hypertension. Renal artery stenosis is conventionally assessed, using angiography, according to the severity of the stenosis. However, the severity of a stenosis is not a reliable indicator of functional significance, or(More)
BACKGROUND It is thought that aneurysms evolve as the result of progressive degradation of the wall in response to abnormal hemodynamics characterized by either high or low wall shear stress (WSS). OBJECTIVE To investigate the effects of these two different hemodynamic pathways in a series of cerebral aneurysms with known rupture sites. METHODS Nine(More)
The simulation of blood flow past endovascular devices such as coils and stents is a challenging problem due to the complex geometry of the devices. Traditional unstructured grid computational fluid dynamics relies on the generation of finite element grids that conform to the boundary of the computational domain. However, the generation of such grids for(More)
RATIONALE AND OBJECTIVE The purpose of this study is to determine whether computational fluid dynamics modeling can correctly predict the location of the major intra-aneurysmal flow structures that can be identified by conventional angiography. MATERIALS AND METHODS Patient-specific models of three cerebral aneurysms were constructed from(More)
PURPOSE To assess hemodynamic differences between aneurysms that occlude rapidly and those occluding in delayed fashion after flow diversion in rabbits. METHODS Thirty-six elastase-induced aneurysms in rabbits were treated with flow diverting devices. Aneurysm occlusion was assessed angiographically immediately before they were sacrificed at 1 (n=6), 2(More)
Three-dimensional (3-D) angiographic methods are gaining acceptance for evaluation of atherosclerotic disease. However, measurement of vessel stenosis from 3-D angiographic methods can be problematic due to limited image resolution and contrast. We present a method for reconstructing vessel surfaces from 3-D angiographic methods that allows for objective(More)
BACKGROUND AND PURPOSE Aneurysm progression and rupture is thought to be governed by progressive degradation and weakening of the wall in response to abnormal hemodynamics. Our goal was to investigate the relationship between the intra-aneurysmal hemodynamic conditions and wall mechanical properties in human aneurysms. MATERIALS AND METHODS A total of 8(More)