Juan R. Cebral

Learn More
BACKGROUND AND PURPOSE Hemodynamic factors are thought to play an important role in the initiation, growth, and rupture of cerebral aneurysms. This report describes a pilot clinical study of the association between intra-aneurysmal hemodynamic characteristics from computational fluid dynamic models and the rupture of cerebral aneurysms. METHODS A total of(More)
Hemodynamic factors are thought to be implicated in the progression and rupture of intracranial aneurysms. Current efforts aim to study the possible associations of hemodynamic characteristics such as complexity and stability of intra-aneurysmal flow patterns, size and location of the region of flow impingement with the clinical history of aneurysmal(More)
The initiation and progression of cerebral aneurysms are degenerative processes of the arterial wall driven by a complex interaction of biological and hemodynamic factors. Endothelial cells on the artery wall respond physiologically to blood-flow patterns. In normal conditions, these responses are associated with nonpathological tissue remodeling and(More)
The simulation of blood flow past endovascular devices such as coils and stents is a challenging problem due to the complex geometry of the devices. Traditional unstructured grid computational fluid dynamics relies on the generation of finite element grids that conform to the boundary of the computational domain. However, the generation of such grids for(More)
Detailed knowledge of the hemodynamic conditions in normal cerebral arteries is important for a better understanding of the underlying mechanisms leading to the initiation and progression of cerebrovascular diseases. Information about the baseline values of hemodynamic variables such as wall shear stresses is necessary for comparison to pathological(More)
The purpose of this article is to review studies of aneurysm risk factors and the suggested hypotheses that connect the different risk factors and the underlying mechanisms governing the aneurysm natural history. The result of this work suggests that at the center of aneurysm evolution there is a cycle of wall degeneration and weakening in response to(More)
Several new image-guidance tools and devices are being prototyped, investigated, and compared. These tools are introduced and include prototype software for image registration and fusion, thermal modeling, electromagnetic tracking, semiautomated robotic needle guidance, and multimodality imaging. The integration of treatment planning with computed(More)
Bolus tracking magnetic resonance imaging (MRI) is a powerful technique for measuring perfusion, and is playing an increasing role in the investigation of acute stroke. However, limitations have been reported when assessing patients with steno-occlusive disease. The presence of a steno-occlusive disease in the artery may cause bolus dispersion, which has(More)
Rupture of intracranial saccular aneurysms is the most common cause of spontaneous subarachnoid hemorrhage, which has significant morbidity and mortality. Although there is still controversy regarding the decision on which unruptured aneurysms should be treated, this is based primarily on their size. Nonetheless, many large lesions do not rupture whereas(More)