Learn More
We obtain a formula for the modulus of metric regularity of a mapping defined by a semi-infinite system of equalities and inequalities. Based on this formula, we prove a theorem of Eckart-Young type for such set-valued infinite-dimensional mappings: given a metrically regular mapping F of this kind, the infimum of the norm of a linear function g such that F(More)
This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to parametric problems of semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is primarily devoted to the study of robust Lipschitzian stability of(More)
The original motivation for this paper was to provide an efficient. quantitative analysis of convex infinite.(or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the(More)