Learn More
During early embryonic development, many inductive interactions between tissues depend on signal transduction processes. We began to test the possibility that G-proteins participate in the signal transduction pathways that mediate neural induction. The expression during Xenopus development of three G alpha subunits, G alpha 0, G alpha i-1 and G alpha s-1,(More)
Kinetic analysis of vitamin C uptake demonstrated that different specialized cells take up ascorbic acid through sodium-vitamin C cotransporters. Recently, two different isoforms of sodium-vitamin C cotransporters (SVCT1/SLC23A1 and SVCT2/SLC23A2) have been cloned. SVCT2 was detected mainly in choroidal plexus cells and neurons; however, there is no(More)
Glycine receptors (GlyRs), together with GABA(A) and nicotinic acetylcholine (ACh) receptors, form part of the ligand-activated ion channel superfamily and regulate the excitability of the mammalian brain stem and spinal cord. Here we report that the ability of the neurotransmitter glycine to gate recombinant and native ionotropic GlyRs is modulated by the(More)
Potassium channels in neurons are linked by guanine nucleotide binding (G) proteins to numerous neurotransmitter receptors. The ability of Go, the predominant G protein in the brain, to stimulate potassium channels was tested in cell-free membrane patches of hippocampal pyramidal neurons. Four distinct types of potassium channels, which were otherwise(More)
The ligand-gated ion channel superfamily plays a critical role in neuronal excitability. The functions of glycine receptor (GlyR) and nicotinic acetylcholine receptor are modulated by G protein betagamma subunits. The molecular determinants for this functional modulation, however, are still unknown. Studying mutant receptors, we identified two basic amino(More)
Bone-specific transcription of the osteocalcin (OC) gene is principally regulated by the Runx2 transcription factor and further stimulated in response to 1alpha,25-dihydroxy Vitamin D3 via its specific receptor (VDR). The rat OC gene promoter contains three recognition sites for Runx2 (sites A-C). Mutation of sites A and B, which flank the(More)
Signaling via heterotrimeric G-proteins is evoked by agonist-mediated stimulation of seven transmembrane spanning receptors (GPCRs). During the last decade it has become apparent that Gα subunits can be activated by receptor-independent mechanisms. Ric-8 belongs to a highly conserved protein family that regulates heterotrimeric G-protein function, acting as(More)
Heterotrimeric G-proteins transduce signals from heptahelical transmembrane receptors to different effector systems, regulating diverse complex intracellular pathways and functions. In brain, facilitation of depolarization-induced neurotransmitter release for synaptic transmission is mediated by Gsalpha and Gqalpha. To identify effectors for(More)
The non-canonical Wnt/Ca2+ signaling pathway has been implicated in the regulation of axis formation and gastrulation movements during early Xenopus laevis embryo development, by antagonizing the canonical Wnt/beta-catenin dorsalizing pathway and specifying ventral cell fate. However, the molecular mechanisms involved in this antagonist crosstalk are not(More)
Xenopus laevis oocyte maturation is induced by the steroid hormone progesterone through a nongenomic mechanism that implicates the inhibition of the effector system adenylyl cyclase (AC). Recently, it has been shown that the G protein betagamma heterodimer is involved in oocyte maturation arrest. Since AC is the proposed target for Gbetagamma action, we(More)