Ramon Guirado8
Emilio Varea8
8Ramon Guirado
8Emilio Varea
7Esther Castillo-Gómez
Learn More
Administration of NMDA receptor antagonists upregulates the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the adult hippocampus. Since the piriform cortex is also populated by PSA-NCAM immunoreactive neurons during adulthood, we sought to characterize them in detail and to test whether NMDA receptor antagonists(More)
Chronic stress in experimental animals induces dendritic atrophy and decreases spine density in principal neurons of the medial prefrontal cortex (mPFC). This structural plasticity may play a neuroprotective role and underlie stress-induced behavioral changes. Different evidences indicate that the prefrontocortical GABA system is also altered by stress and(More)
Chronic restraint stress has been shown to induce structural remodelling throughout the interconnected dentate gyrus-CA3 fields. To find out how this stressor affects the rate of adult hippocampal neurogenesis, we subjected rats to acute or chronic restraint stress and assessed the proliferation, survival and differentiation of newly born cells in the(More)
The production of new neurons declines during adulthood and persists, although at very low levels, in the aged hippocampus. Since neurogenesis in young adults has been related to learning and memory, its reduction may contribute to the age-related impairments in these abilities. Adrenalectomy (ADX) enhances neurogenesis in the aged hippocampus, although it(More)
The expression of the polysialylated neural cell adhesion molecule (PSA-NCAM) is increased in the hippocampus after chronic restraint stress (CRS) and may play a permissive role in structural changes that include dendrite reorganization in dentate gyrus (DG) and CA3 pyramidal neurons and suppression of neurogenesis in DG. We report that chronic oral(More)
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) continues to be expressed in the adult hippocampus, mainly in a subset of neurons located in the innermost portion of the granule cell layer. PSA-NCAM immunoreactive neurons have also been described outside this layer in humans, where they are severely reduced in schizophrenic brains.(More)
Neuronal structural plasticity is known to have a major role in cognitive processes and in the response of the CNS to aversive experiences. This type of plasticity involves processes ranging from neurite outgrowth/retraction or dendritic spine remodeling, to the incorporation of new neurons to the established circuitry. However, the study of how these(More)
Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature(More)
The mammalian central nervous system, due to its interaction with the environment, must be endowed with plasticity. Conversely, the nervous tissue must be substantially static to ensure connectional invariability. Structural plasticity can be viewed as a compromise between these requirements. In adult mammals, brain structural plasticity is strongly reduced(More)