Learn More
Doublecortin (DCX) is a protein required for normal neuronal migration in the developing cerebral cortex, where it is widely expressed in both radially and tangentially migrating neuroblasts. Moreover, it has been observed in the adult rostral migratory stream, which contains the neuronal precursors traveling to the olfactory bulb. We have performed DCX(More)
New neurons in the adult brain transiently express molecules related to neuronal development, such as the polysialylated form of neural cell adhesion molecule, or doublecortin (DCX). These molecules are also expressed by a cell population in the rat paleocortex layer II, whose origin, phenotype, and function are not clearly understood. We have classified(More)
The transcription factor Pax 6 is expressed in precursor cells during embryonic CNS development, and it plays an important role in the regulation of cell proliferation and neuronal fate determination. Pax 6-expressing cells are also present in the adult hippocampal dentate gyrus and subventricular zone/rostral migratory stream, regions in which neuronal(More)
Recent hypotheses suggest that changes in neuronal structure and connectivity may underlie the etiology of depression. The medial prefrontal cortex (mPFC) is affected by depression and shows neuronal remodeling during adulthood. This plasticity may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), which is intensely(More)
The prefrontal cortex (PFC) of adult rodents is capable of undergoing neuronal remodeling and neuroimaging studies in humans have revealed that the structure of this region also appears affected in different psychiatric disorders. However, the cellular mechanisms underlying this plasticity are still unclear. The polysialylated form of the neural cell(More)
The rat medial prefrontal cortex, an area considered homologous to the human prefrontal cortex, is a region in which neuronal structural plasticity has been described during adulthood. Some plastic processes such as neurite outgrowth and synaptogenesis are known to be regulated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM).(More)
Structural modifications occur in the brain of severely depressed patients and they can be reversed by antidepressant treatment. Some of these changes do not occur in the same direction in different regions, such as the medial prefrontal cortex, the hippocampus or the amygdala. Differential structural plasticity also occurs in animal models of depression(More)
The lizard medial cortex (a zone homologous to the mammalian fascia dentata) shows delayed postnatal neurogenesis throughout the lifetime of these animals. Experimental lesioning of this area is followed by neuronal regeneration, a unique phenomenon in the adult amniote telencephalon. The differential effects of temperature and photoperiod on postnatal(More)
Chronic restraint stress has been shown to induce structural remodelling throughout the interconnected dentate gyrus-CA3 fields. To find out how this stressor affects the rate of adult hippocampal neurogenesis, we subjected rats to acute or chronic restraint stress and assessed the proliferation, survival and differentiation of newly born cells in the(More)
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) continues to be expressed in the adult hippocampus, mainly in a subset of neurons located in the innermost portion of the granule cell layer. PSA-NCAM immunoreactive neurons have also been described outside this layer in humans, where they are severely reduced in schizophrenic brains.(More)