Learn More
We have studied the responses to electrical and chemical stimulation of the ventrolateral medulla in the chloralose-anesthetized, paralyzed, artificially ventilated rat. Locations of most active pressor responses were compared to regions containing neurons labeled immunocytochemically for phenylethanolamine N-methyltransferase (PNMT), the enzyme catalyzing(More)
BACKGROUND AND PURPOSE Angiotensin II, through stimulation of AT(1) receptors, not only controls blood pressure but also modulates cerebrovascular flow. We sought to determine whether selective AT(1) antagonists could be therapeutically advantageous in brain ischemia during chronic hypertension. METHODS We pretreated spontaneously hypertensive rats (SHR)(More)
Brain inflammation has a critical role in the pathophysiology of brain diseases of high prevalence and economic impact, such as major depression, schizophrenia, post-traumatic stress disorder, Parkinson's and Alzheimer's disease, and traumatic brain injury. Our results demonstrate that systemic administration of the centrally acting angiotensin II AT(1)(More)
Angiotensin II receptor subtypes (AT1 and AT2) were characterized in rat brain by displacement with the specific angiotensin antagonists Du Pont 753 and CGP 42112A, respectively, and quantitative autoradiography. Young (2-wk-old) rats expressed AT1 receptors in selected limbic system areas, structures involved in cardiovascular and fluid regulation, parts(More)
Rat brain and pituitary angiotensin II (AII) binding sites were quantitated by incubation of tissue sections with 125I-[Sar1] AII, Ultrofilm radioautography, computerized densitometry, and comparison with 125I-standards at appropriate film exposure times. The highest number of AII binding sites was found in anterior pituitary and the circumventricular(More)
Brain Angiotensin II, through stimulation of brain AT(1) receptors, regulates pituitary hormones and autonomic activity. We have administered the insurmountable AT(1) antagonist Candesartan, s.c. via osmotic minipumps for 14 days, to determine whether peripheral chronic AT(1) blockade affects AT(1) receptor binding and mRNA in the brain. Peripherally(More)
Endothelial dysfunction and inflammation enhance vulnerability to hypertensive brain damage. To explore the participation of Angiotensin II (Ang II) in the mechanism of vulnerability to cerebral ischemia during hypertension, we examined the expression of inflammatory factors and the heat shock protein (HSP) response in cerebral microvessels from(More)
Stress reduces gastric blood flow and produces acute gastric mucosal lesions. We studied the role of angiotensin II in gastric blood flow and gastric ulceration during stress. Spontaneously hypertensive rats were pretreated for 14 days with the AT1 receptor antagonist candesartan before cold-restraint stress. AT1 receptors were localized in the endothelium(More)