Juan M. Funes

Learn More
An increased dependency on glycolysis for ATP production is considered to be a hallmark of tumor cells. Whether this increase in glycolytic activity is due mainly to inherent metabolic alterations or to the hypoxic microenvironment remains controversial. Here we have transformed human adult mesenchymal stem cells (MSC) using genetic alterations as described(More)
PURPOSE The importance of genetic and epigenetic alterations maybe in their aggregate role in altering core pathways in tumorigenesis. EXPERIMENTAL DESIGN Merging genome-wide genomic and epigenomic alterations, we identify key genes and pathways altered in colorectal cancers (CRC). DNA methylation analysis was tested for predicting survival in CRC(More)
D cyclins (D1, D2 and D3) and their catalytic subunits (cyclin-dependent kinases cdk4 and cdk6) have a facilitating, but nonessential, role in cell cycle entry. Tissue-specific functions for D-type cyclins and cdks have been reported; however, the biochemical properties of these kinases are indistinguishable. We report that an F box protein, Fbxo7,(More)
INTRODUCTION Residing within human dental pulp are cells of an ectomesenchymal origin which have the potential to differentiate into odontoblast-like cells. These cells have a limited growth potential owing to the effects of cell senescence. This study examines the effects of immortalizing odontoblast-like cells on cell proliferation and mineralization by(More)
The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains(More)
Stem cells from mesenchymal origin (MSC) exert a plethora of immunomodulatory effects. We created a neoplastic model based on in vitro step-wise transformation to assess whether oncogenic pathways have the capacity to mould the cross-talk of MSC and lymphocytes. Neoplastic MSC exhibit an increased inhibitory effect on T cell proliferation, either directly(More)
Since the sequencing of the human genome, recent efforts in cancer drug target discovery have focused more on the identification of novel functions of known genes and the development of more appropriate tumor models. In the present study, we investigated in vitro transformed human adult mesenchymal stem cells (MSC) to identify novel candidate cancer drug(More)
Antiangiogenic resistance is a major problem in cancer therapeutics. Preclinical research has identified several compensatory proangiogenic pathways that arise upon vascular endothelial growth factor inhibition, several of which have led to the development of novel drugs. However, the combination of two or more targeted agents in the angiogenesis system is(More)
Immune escape is a hallmark of cancer, but whether it relies upon extrinsic immune-selective pressure or is inherently orchestrated by oncogenic pathways is unresolved. To address this question, we took advantage of an in vitro model of sequentially transformed human mesenchymal stem cells (hMSC). Neoplastic transformation in this model increased the(More)