Learn More
The number of meiotic crossovers (COs) is tightly regulated within a narrow range, despite a large excess of molecular precursors. The factors that limit COs remain largely unknown. Here, using a genetic screen in Arabidopsis thaliana, we identified the highly conserved FANCM helicase, which is required for genome stability in humans and yeasts, as a major(More)
In plants, small non-coding RNAs (≈20-30 nt) play a major role in a gene regulation mechanism that controls development, maintains heterochromatin and defends against viruses. However, their possible role in cell division (mitosis and meiosis) still remains to be ascertained. ARGONAUTE (AGO) proteins are key players in the different small RNA (sRNA)(More)
The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in(More)
As a part of the WHO Age-Associated Dementia Project, Chile has been participating in a cross-national survey on dementia frequency and determinants since 1989. In the present study, apolipoprotein E (ApoE) polymorphism genotypes have been compared in 95 patients with Alzheimer's disease (AD) (mean age 80.7; 95% CI 79.2-82.2, range 66-97) and 187 healthy(More)
The cohesin complex plays a key role for the maintenance of sister chromatid cohesion and faithful chromosome segregation in both mitosis and meiosis. This complex is formed by two structural maintenance of chromosomes protein family (SMC) subunits and two non-SMC subunits: an α-kleisin subunit SCC1/RAD21/REC8 and an SCC3-like protein. Several studies(More)
Meiotic recombination plays a critical role in achieving accurate chromosome segregation and increasing genetic diversity. Many studies, mostly in yeast, have provided important insights into the coordination and interplay between the proteins involved in the homologous recombination pathway, especially the recombinase RAD51 and the meiosis-specific DMC1.(More)
Meiotic recombination occurs as a programmed event that initiates by the formation of DNA double-strand breaks (DSBs) that give rise to the formation of crossovers that are observed as chiasmata. Chiasmata are essential for the accurate chromosome segregation and the generation of new combinations of parental alleles. Some treatments that provoke exogenous(More)
To assess the safety and efficacy of rilpivirine in combination with emtricitabine and tenofovir (RPV/FTC/TDF) as a once-daily single-tablet regimen (STR) in HIV-1-infected children and adolescents we performed a multicenter case series study of HIV-1-infected patients. Inclusion criteria were initiation of therapy with RPV/FTC/TDF before the age of 18.(More)
Ataxia-telangiectasia is a multisystemic disease with severe neurological affectation, immunodeficiency and telangiectasia. The disorder is caused by alterations in the ATM gene, whose size and complexity make molecular diagnosis difficult. We designed a target-enrichment next-generation sequencing strategy to characterize 28 patients from several regions(More)
Maintenance and precise regulation of sister chromatid cohesion is essential for faithful chromosome segregation during mitosis and meiosis. Cohesin cofactors contribute to cohesin dynamics and interact with cohesin complexes during cell cycle. One of these, PDS5, also known as SPO76, is essential during mitosis and meiosis in several organisms and also(More)