Learn More
Extracellular (EC) concentrations of amino acids were determined in the rat dentate gyrus by means of non-linear regression analysis of 'in vivo' brain dialysis data, considering a simple model of diffusion through a dialysis membrane. The apparent diffusion constants (K) of several amino acids were also calculated in the 'in vivo' situation. While putative(More)
Schizophrenia is a complex disorder that interferes with the function of several brain systems required for cognition and normal social behaviour. Although the most notable clinical aspects of the disease only become apparent during late adolescence or early adulthood, many lines of evidence suggest that schizophrenia is a neurodevelopmental disorder with a(More)
Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of(More)
A decade ago, our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology was essentially null. A plethora of recent studies has altered this situation profoundly such that kainate receptors are now regarded as key players in the modulation of transmitter release, as important mediators of the postsynaptic(More)
The mechanism through which kainate receptors downregulate the release of GABA in the hippocampus is not known. We have found that the action of kainate on the hippocampal inhibitory postsynaptic current (IPSC) is mediated by a metabotropic process that is sensitive to Pertussis toxin (PTx) and independent of ion channel current. The downregulation of GABA(More)
Using microcultured neurons and hippocampal slices, we found that under conditions that completely block AMPA receptors, kainate induces a reduction in the effectiveness of GABAergic synaptic inhibition. Evoked inhibitory postsynaptic currents (IPSCs) were decreased by kainate by up to 90%, showing a bell-shaped dose-response curve similar to that of native(More)
NMDA receptors are allosterically inhibited by Zn2+ ions in a voltage-independent manner. The apparent affinity for Zn2+ of the heteromeric NMDA receptors is determined by the subtype of NR2 subunit expressed, with NR2A-containing receptors being the most sensitive (IC50, approximately 20 nM) and NR2C-containing receptors being the least sensitive (IC50,(More)
We have performed nonradioactive double in situ hybridization to study the expression of glutamic acid decarboxylase and GluR6 or GluR5 subunits in hippocampal slices. Our results indicate that although GluR6 is primarily expressed by pyramidal cells and dentate granule neurons and GluR5 is prominently expressed in nonpyramidal cells, there is a significant(More)
The activation-inactivation properties of membrane currents induced by the rapid application of glutamate or kainate were studied in cultured hippocampal neurons and in HEK cells transfected with a cDNA encoding the GluR6 subunit. The onset of desensitization was rapid and similar in native and recombinant channels (approximately 80 s(-1) of onset rate(More)