Learn More
Human embryonic stem (hES) cells are defined by their extensive self-renewal capacity and their potential to differentiate into any cell type of the human body. The challenge in using hES cells for developmental biology and regenerative medicine has been to direct the wide differentiation potential toward the derivation of a specific cell fate. Within the(More)
Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The(More)
Schwann cell myelin contains highly compacted layers of membrane as well as noncompacted regions with a visible cytoplasm. One of these cytoplasmic compartments is the Schmidt-Lanterman incisure, which spirals through the compacted layers and is believed to help sustain the growth and function of compact myelin. Incisures contain adherens junctions (AJs),(More)
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) appeared during the evolution of vertebrates as a new mechanism for regulation of cell interactions. This large and abundant glycoprotein can exert steric effects at the cell surface that lead to the attenuation of cell-cell bonds mediated not only by NCAM but also a variety of other(More)
Calcium-permeable neurotransmitter receptors are concentrated into structurally and biochemically isolated cellular compartments to localize calcium-mediated events during neurotransmission. The cytoplasmic membrane contains lipid microdomains called lipid rafts, which can gather into microscopically visible clusters, and thus the association of a(More)
N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated(More)
1. The relationship between cycloheximide (CHX) and RNA synthesis inhibitors on trophic-deprived neuronal survival was studied with the use of primary cultures of stage (St) 34 chick ciliary ganglion (CG) neurons, to analyze the biological process of neuronal death caused by trophic factor withdrawal. Tissue culture conditions were refined by characterizing(More)
One of the recent advances in the molecular definition of a synapse has been the identification of cadherins as major structural components. The presence of classic (N- and E-) cadherins in the synaptic complex is not surprising considering the ultrastructural similarities between interneuronal synapses and the adhesive junctions formed between epithelial(More)
The polysialylation of neural cell adhesion molecule (NCAM) evolved in vertebrates to carry out biological functions related to changes in cell position and morphology. Many of these effects involve the attenuation of cell interactions that are not mediated through NCAM's own adhesion properties. A proposed mechanism for this global effect on cell(More)
The juxtamembrane domain (JMD) of N-cadherin cytoplasmic tail is an important regulatory region of the clustering and adhesion activities of the protein. In addition, the JMD binds a diversity of proteins capable of modifying intracellular processes including cytoskeletal rearrangement mediated by Rho GTPases. These GTPases also function as regulators of(More)