Juan José Fumero

Learn More
Heterogeneous computing has now become mainstream with virtually every desktop machines featuring accelerators such as Graphics Processing Units (GPUs). While heterogeneity offers the promise of high-performance and high-efficiency, it comes at the cost of huge programming difficulties. Languages and interfaces for programming such system tend to be(More)
GPUs (Graphics Processing Unit) and other accelerators are nowadays commonly found in desktop machines, mobile devices and even data centres. While these highly parallel processors offer high raw performance, they also dramatically increase program complexity, requiring extra effort from programmers. This results in difficult-to-maintain and non-portable(More)
Computer systems are increasingly featuring powerful parallel devices with the advent of many-core CPUs and GPUs. This offers the opportunity to solve computationally-intensive problems at a fraction of the time traditional CPUs need. However, exploiting heterogeneous hardware requires the use of low-level programming language approaches such as OpenCL,(More)
Calorimetric titrations have been performed on the binding of ethidium and propidium to calf thymus DNA at temperatures in the 15-60 degrees C range. Enthalpy changes (delta HB) derived from these experiments performed with the new Omega reaction calorimeter have a precision of +/- 0.10 kcal/mol or less at all temperatures. For ethidium (a monocation),(More)
Differential scanning calorimetry (DSC) has been employed to determine the effect of five commonly employed extrinsic potential-sensitive probes on phase transitions of multilamellar suspensions of L-alpha-dimyristoylphosphatidylcholine (DMPC). At mol% values of less than five, the effect of these probes on the excess heat capacity curve in the vicinity of(More)
  • 1