#### Filter Results:

#### Publication Year

2001

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Let S n be polynomials orthogonal with respect to the inner product

In this paper we consider a Sobolev inner product (f, g) S = f gdµ + λ f g dµ (1) and we characterize the measures µ for which there exists an algebraic relation between the polynomials, {P n }, orthogonal with respect to the measure µ and the polynomials, {Q n }, orthogonal with respect to (1), such that the number of involved terms does not depend on the… (More)

- Andrei Martínez-Finkelshtein, Juan J Moreno-Balcázar, Héctor Pijeira-Cabrera, A Martínez, J J Moreno, H Pijeira
- 2003

We study the asymptotic behaviour of the monic orthogonal polynomials with respect to the Gegenbauer-Sobolev inner product (f, g) S = f, g + λf , g where f, g = 1 −1 f (x)g(x)(1 − x 2) α−1/2 dx with α > −1/2 and λ > 0. The asymptotics of the zeros and norms of these polynomials is also established. The study of the orthogonal polynomials with respect to the… (More)

We consider a generalization of the classical Hermite polynomials by the addition of terms involving derivatives in the inner product. This type of generalization has been studied in the literature from the point of view of the algebraic properties. Thus, our aim is to study the asymptotics of this sequence of nonstandard orthogonal polynomials. In fact, we… (More)

We establish Mehler–Heine-type formulas for orthogonal polynomials related to rational modifications of Hermite weight on the real line and for Hermite–Sobolev orthogonal polynomials. These formulas give us the asymptotic behaviour of the smallest zeros of the corresponding orthogonal polynomials. Furthermore, we solve a conjecture posed in a previous paper… (More)

We obtain the asymptotic behavior of the zeros of a class of generalized hypergeometric polynomials. For this purpose, we make use of a Mehler–Heine type formula for these polynomials. We illustrate these results with numerical experiments and some figures.