Learn More
Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected(More)
Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain(More)
Although sustainable forest management (SFM) has been widely adopted as a policy and management goal, high rates of forest loss and degradation are still occurring in many areas. Human activities such as logging, livestock husbandry, crop cultivation, infrastructural development, and use of fire are causing widespread loss of biodiversity, restricting(More)
Tree presence in semiarid ecosystems is generally constrained by insufficient annual rainfall. However , in semiarid Chile, rainforest patches dominated by Aextoxicon punctatum are unexpectedly found on coastal mountaintops (450–600 m) at 30°S, surrounded by a xerophytic vegetation matrix that receives only 147 mm of annual precipitation. It has been(More)
The study of functional traits and physiological mechanisms determining species’ drought tolerance is important for the prediction of their responses to climatic change. Fog-dependent forest patches in semiarid regions are a good study system with which to gain an understanding of species’ responses to increasing aridity and patch fragmentation. Here we(More)
Nucleation is a successional process in which extant vegetation facilitates seed dispersal and recruitment of other individuals and species around focal points in the landscape, leading to ecosystem recovery. This is an important process in disturbed sites where regeneration is limited by abiotic conditions or restrictive seed dispersal. We investigated(More)
This study characterizes the structure of a plant-pollinator network in a temperate rain forest of Chiloé Island, southern Chile, where woody species are strongly dependent on biotic pollinators, and analyzes its robustness to the loss of participating species. Degree distribution, nestedness, and expected species persistence were evaluated. In addition, we(More)
pportunities for ecological restoration and rehabilitation of degraded ecosystems in the Americas are likely to multiply in the coming decades. Ecological restoration experiments will become increasingly valuable and necessary under several projected scenarios: abandon-ment of production systems associated with rural–urban migration and economic(More)
Lumbering of Fitzroya cupressoides in Chile began in 1599 and continued until 1976, when the species was declared a national monument and cutting of live trees was prohibited. Today, F. cupressoides is threatened; many of the remaining stands in the coastal range appear to be declining, with a predominance of standing dead stems and patchy, sparse(More)
Long-term studies of plant–pollinator interactions are almost nonexistent in the scientific literature. The objective of the present study was to determine changes and trends in the pollinator assemblage of ulmo (Eucryphia cordifolia; Cunoniaceae), a canopy-emergent tree found in Chilean temperate rainforests. We assessed the temporal variability of the(More)