Juan Ignacio Perotti

Learn More
Although most networks in nature exhibit complex topologies, the origins of such complexity remain unclear. We propose a general evolutionary mechanism based on global stability. This mechanism is incorporated into a model of a growing network of interacting agents in which each new agent's membership in the network is determined by the agent's effect on(More)
Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called correlated bursts, have(More)
Interactions in time-varying complex systems are often very heterogeneous at the topological level (who interacts with whom) and at the temporal level (when interactions occur and how often). While it is known that temporal heterogeneities often have strong effects on dynamical processes, e.g. the burstiness of contact sequences is associated with slower(More)
We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When(More)
The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity(More)
  • 1