Juan Ignacio Díaz-Hernández

Learn More
β-Amyloid (Aβ) peptide production from amyloid precursor protein (APP) is essential in the formation of the β-amyloid plaques characteristic of Alzheimer's disease. However, the extracellular signals that maintain the balance between nonpathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remain poorly(More)
It was recently suggested that tau protein released as a result of neuronal death is toxic to neighbouring cells, an effect that is mediated through the activation of muscarinic M1 and/or M3 receptors. Nevertheless, why tau protein and not other native muscarinic agonists, like ACh, can induce this neurotoxicity remains unknown. To clarify this issue, we(More)
Axonal growth is essential for establishing neuronal circuits during brain development and for regenerative processes in the adult brain. Unfortunately, the extracellular signals controlling axonal growth are poorly understood. Here we report that a reduction in extracellular ATP levels by tissue-nonspecific alkaline phosphatase (TNAP) is essential for the(More)
In neurons, DNA is prone to free radical damage, although repair mechanisms preserve the genomic integrity. However, activation of the DNA repair system, poly(ADP-ribose) polymerase (PARP-1), is thought to cause neuronal death through NAD+ depletion and mitochondrial membrane potential (delta psi(m)) depolarization. Here, we show that abolishing PARP-1(More)
Brain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function(More)
ATP, via purinergic P2X receptors, acts as a neurotransmitter and modulator in both the central and peripheral nervous systems, and is also involved in many biological processes, including cell proliferation, differentiation and apoptosis. Previously, we have reported that P2X7 receptor inhibition promotes axonal growth and branching in cultured hippocampal(More)
The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main(More)
Glutathione deficiency is an early biochemical feature that occurs during apoptotic neuronal death associated with certain neurological disorders such as Parkinson disease. However, whether specific targeting of glutathione biosynthesis in neurons is sufficient to trigger neurodegeneration remains undetermined. To address this issue, we used a vector-based(More)
The amyloid precursor protein (APP) is proteolytically processed by β- and γ-secretases to release amyloid-β peptide (Aβ), the main component found in senile plaques of Alzheimer's disease (AD) patient brains. Alternatively, APP can be cleaved within the Aβ sequence by α-secretase, thus precluding the generation of Aβ. We have demonstrated that activation(More)
P2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic(More)