Learn More
We report a Jak2V617F knockin mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a significant selective competitive advantage over wild-type HSCs. In(More)
Peripheral T cell lymphomas (PTCLs) are a heterogeneous and poorly understood group of non-Hodgkin lymphomas. Here we combined whole-exome sequencing of 12 tumor-normal DNA pairs, RNA sequencing analysis and targeted deep sequencing to identify new genetic alterations in PTCL transformation. These analyses identified highly recurrent epigenetic factor(More)
Following organ injury, morphogenic epithelial responses can vary depending on local cell density. In the present study, the role of cell confluence in determining the responsiveness of renal epithelial cells to the dedifferentiating morphogenic signals of hepatocyte growth factor (HGF) was examined. Increasing confluence resulted in a greater tendency of(More)
Activating mutations in NOTCH1 are common in T cell acute lymphoblastic leukemia (T-ALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of the response to anti-NOTCH1 therapies in vivo. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown, with(More)
To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-Ras(G12D) murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly(More)
Early immature T cell acute lymphoblastic leukemias (T-ALLs) account for ~5-10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. In this study, analysis of microarray gene expression signatures in adult T-ALL demonstrated a high prevalence of early(More)
Activating mutations in NOTCH1 are common in T-cell acute lymphoblastic leukemia (TALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of clinical response to anti-NOTCH1 therapies. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown with prominent(More)
Oncogenic activating mutations in NOTCH1 occur in more than 50% of T-cell acute lymphoblastic leukemias (T-ALLs). In the present study, we describe a novel mechanism of NOTCH1 activation in T-ALL in which a deletion removing the 5' portion of NOTCH1 abolishes the negative regulatory control of the extracellular domain and leads to constitutively active(More)
Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to(More)
The metal-forming industries require the use of greases to lubricate metal surfaces during manufacturing operations, and the residues of these lubricants must be removed prior to finishing processes to protect and improve the appearance of the final product. An aqueous, biological metal-cleaning process operating under mild conditions (pH 9, 42°C)(More)