Learn More
Anecdotal evidence suggests that birds have smaller intestines than mammals. In the present analysis, we show that small birds and bats have significantly shorter small intestines and less small intestine nominal (smooth bore tube) surface area than similarly sized nonflying mammals. The corresponding >50% reduction in intestinal volume and hence mass of(More)
To evaluate the permeability of the intestine of the house sparrow Passer domesticus to hydrophilic compounds, we applied a pharmacokinetic technique to measure in vivo absorption of two carbohydrate probes, l-arabinose and d-mannitol. Probes were fed or injected, and blood and excreta were subsequently collected and analyzed by gas chromatography/mass(More)
Starvation is a condition that often affects animals in nature. The gastrointestinal tract is the organ system displaying the most rapid and dramatic changes in response to nutrient deprivation. To date, little is known about starvation phases and effects on the organ morphology and digestive function in small passerine birds. In this study, we determined(More)
Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and(More)
Water-soluble nutrients are absorbed by the small intestine via transcellular and paracellular processes. The capacity for paracellular absorption seems greater in fliers than in nonfliers, although that conclusion rests mainly on a comparison of flying birds and nonflying mammals because only two frugivorous bat species have been studied. Furthermore, the(More)
We previously demonstrated size selectivity in the absorption of nonelectrolyte hydrosoluble probes in birds, presumably by the paracellular pathway. Our goal in this study was to determine the charge selectivity in the absorption of hydrosoluble d-dipeptides, because there have been no studies of the electroaffinity of this absorption pathway in birds. For(More)
Water-soluble nutrients are absorbed by the small intestine via transcellular and paracellular processes. The capacity for paracellular absorption seems lower in nonfliers than in fliers, although that conclusion rests largely on a comparison of relatively larger nonflying mammals (>155g) and relatively smaller flying birds (<155g). We report on(More)
Many species show diet-induced flexibility of activity of intestinal enzymes; however, molecular and genetic mechanisms responsible for such modulation are less known, particularly in altricial birds. The goal of our study was to test whether a diet-induced increase in activity of intestinal maltase and sucrase in house sparrow nestlings is matched with an(More)
The isolation of viable enterocytes, villi and crypts from the small intestine of a feral bird (Columba livia) is important for performing physiological experiments in ecologically relevant processes of membrane transport. The effectiveness of mechanical disruption, enzymatic digestion and chelating agents were compared. The objectives were to isolate(More)
In birds and mammals the metabolic response to fasting has been studied and can be characterized by three consecutive phases reflecting metabolic and physiological adjustments. An effective way to minimize energy expenditure during food scarcity is to decrease the mass of the organs. As the digestive system is metabolically expensive to maintain, the small(More)