Juan Gómez-Sanchís

Learn More
The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when(More)
This paper presents a methodology to estimate the future success of a collaborative recommender in a citizen web portal. This methodology consists of four stages, three of them are developed in this study. First of all, a user model, which takes into account some usual characteristics of web data, is developed to produce artificial data sets. These data(More)
BACKGROUND The sterile insect technique (SIT) is acknowledged around the world as an effective method for biological pest control of Ceratitis capitata (Wiedemann). Sterile insects are produced in biofactories where one key issue is the selection of the progenitors that have to transmit specific genetic characteristics. Recombinant individuals must be(More)
The Balanced Scorecard (BSC) is a validated tool to monitor enterprise performances against specific objectives. Through the choice and the evaluation of strategic Key Performance Indicators (KPIs), it provides a measure of the past company's outcome and allows planning future managerial strategies. The Fresenius Medical Care (FME) BSC makes use of 30 KPIs(More)
The use of computer-based clinical decision support (CDS) tools is growing significantly in recent years. These tools help reduce waiting lists, minimise patient risks and, at the same time, optimise the cost health resources. In this paper, we present a CDS application that predicts the probability of having unst able angina based on clinical data. Due to(More)
OBJECTIVE Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of(More)
Sparse Manifold Clustering and Embedding (SMCE) algorithm has been recently proposed for simultaneous clustering and dimensionality reduction of data on nonlinear manifolds using sparse representation techniques. In this work, SMCE algorithm is applied to the differential discrimination of Glioblastoma and Meningioma Tumors by means of their Gene Expression(More)