Juan Eugenio Iglesias

Learn More
Automatic whole-brain extraction from magnetic resonance images (MRI), also known as skull stripping, is a key component in most neuroimage pipelines. As the first element in the chain, its robustness is critical for the overall performance of the system. Many skull stripping methods have been proposed, but the problem is not considered to be completely(More)
This work addresses the challenging problem of simultaneously segmenting multiple anatomical structures in highly varied CT scans. We propose the entangled decision forest (EDF) as a new discriminative classifier which augments the state of the art decision forest, resulting in higher prediction accuracy and shortened decision time. Our main contribution is(More)
This paper presents a new supervised learning framework for the efficient recognition and segmentation of anatomical structures in 3D computed tomography (CT), with as little training data as possible. Training supervised classifiers to recognize organs within CT scans requires a large number of manually delineated exemplar 3D images, which are very(More)
Multi-atlas segmentation (MAS), first introduced and popularized by the pioneering work of Rohlfing, et al. (2004), Klein, et al. (2005), and Heckemann, et al. (2006), is becoming one of the most widely-used and successful image segmentation techniques in biomedical applications. By manipulating and utilizing the entire dataset of "atlases" (training images(More)
Availability of multi-modal magnetic resonance imaging (MRI) databases opens up the opportunity to synthesize different MRI contrasts without actually acquiring the images. In theory such synthetic images have the potential to reduce the amount of acquisitions to perform certain analyses. However, to what extent they can substitute real acquisitions in the(More)
Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian analysis would also consider all possible alternate values these(More)
OBJECTIVE An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to(More)
Automated analysis of mammograms requires robust methods for pectoralis segmentation and nipple detection. Locating the nipple is especially important in multiview computer aided detection systems, in which findings are matched across images using the nipple-to-finding distance. Segmenting the pectoralis is a key preprocessing step to avoid false positives(More)
Multi-atlas label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. A standard label fusion algorithm relies on independently computed pairwise registrations between individual atlases and the (target) image to be segmented. These registrations are then used to propagate the atlas labels to the target(More)
Current label fusion methods enhance multi-atlas segmentation by locally weighting the contribution of the atlases according to their similarity to the target volume after registration. However, these methods cannot handle voxel intensity inconsistencies between the atlases and the target image, which limits their application across modalities or even(More)