Learn More
At the first synapse in the auditory pathway, the receptor potential of mechanosensory hair cells is converted into a firing pattern in auditory nerve fibers. For the accurate coding of timing and intensity of sound signals, transmitter release at this synapse must occur with the highest precision. To measure directly the transfer characteristics of the(More)
Cholinergic brainstem neurones make inhibitory synapses on outer hair cells (OHCs) in the mature mammalian cochlea and on inner hair cells (IHCs) prior to the onset of hearing. We used electrical stimulation in an excised organ of Corti preparation to examine evoked release of acetylcholine (ACh) onto neonatal IHCs from these efferent fibres. Whole-cell(More)
The auditory system processes time and intensity through separate brainstem pathways to derive spatial location as well as other salient features of sound. The independent coding of time and intensity begins in the cochlea, where afferent neurons can fire action potentials at constant phase throughout a wide range of stimulus intensities. We have(More)
1. The mechanisms of action of antagonists of the gamma-aminobutyric acid C (GABA(C)) receptor picrotoxin, quercetin and pregnanolone were studied. 2. Ionic currents (chloride), mediated through human homomeric GABA rho(1) receptors expressed in Xenopus oocytes, were recorded by two-electrode voltage clamp. 3. Dose-response (D-R) curves and kinetic(More)
The modulation of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA-gated Cl(-) channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors expressed in(More)
The afferent synapse between the inner hair cell (IHC) and the auditory nerve fiber provides an electrophysiologically accessible site for recording the postsynaptic activity of a single ribbon synapse. Ribbon synapses of sensory cells release neurotransmitter continuously, the rate of which is modulated in response to graded changes in IHC membrane(More)
The two fundamental forms of short-term plasticity, short-term depression and facilitation, coexist at most synapses, but little is known about their interaction. Here, we studied the interplay between short-term depression and facilitation at calyx of Held synapses. Stimulation at a "low" frequency of 10 or 20 Hz, which is in the range of the spontaneous(More)
We studied the functional activation of different polymorphic variants of the human dopamine D(4) receptors by the three major central monoamines, dopamine, noradrenaline and serotonin. Dopamine D(4) receptors carrying two (D4.2), four (D4.4) or seven (D4.7) repeats within the third intracellular domain were co-expressed with G protein-regulated inwardly(More)
Inner hair cells (IHCs) in the mammalian cochlea are able to continuously release neurotransmitter in the presence of constant stimuli. Nonetheless, strong synaptic depression is observed over the first few milliseconds of stimulation. This process most likely underlies adaptation in the auditory nerve. In the present study we demonstrate that under certain(More)
The sensory epithelium of the mammalian inner ear contains two types of mechanosensory cells: inner (IHC) and outer hair cells (OHC). They both transduce mechanical force generated by sound waves into electrical signals. In their apical end, these cells possess a set of stereocilia representing the mechanosensing organelles. IHC are responsible for(More)