Learn More
Introduction of the two-phase centrifugation system for olive oil extraction during the early nineties in Spain has led to the generation of approximately four million tons per year of a solid olive-mill by-product called "alperujo" (AL). Agrochemical characterisation showed that AL has a high moisture content, slightly acidic pH values and a very high(More)
The use of maize straw (MS) or cotton waste (CW) as bulking agents in the composting of olive mill wastewater (OMW) sludge was compared by studying the organic matter (OM) mineralisation and humification processes during composting and the characteristics of the end products. Both composts were prepared in a pilot-plant using the Rutgers static-pile system.(More)
 Four olive mill wastewater (OMW) composts, prepared with three N-rich organic wastes and two different bulking agents, were studied in a pilot plant using the Rutgers system. Organic matter (OM) losses during composting followed a first-order kinetic equation in all the piles, the slowest being the OM mineralisation rate in the pile using maize straw (MS).(More)
Olive-mill wastes and by-products from the edible olive oil industry contain a high non-stabilised organic load, including organic acids, phenolic compounds and fats with antimicrobial and phytotoxic properties, which make them unsuitable for direct agricultural application. The most abundant olive-mill by-product in Spain is "alperujo" (AL), a solid(More)
A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a(More)
The effects of the composting process on the chemical and structural properties of humic acids have been studied in seven different organic waste mixtures from different origin. Only slight changes in elemental composition have been found in the humic acids after the composting process pointing to a more aromatic structure with higher proportions of oxygen(More)
The main by-product generated by the Spanish olive oil industry, a wet solid lignocellulosic material called “alperujo” (AL), was evaluated as a composting substrate by using different aeration strategies and bulking agents. The experiments showed that composting performance was mainly influenced by the type of bulking agent added, and by the number of(More)
Elemental, functional and spectroscopic analyses (FTIR, 13C-NMR) were performed to study fulvic acids of composted olive mill wastes plus cereal straw, in order to follow the maturity of the final product during composting. The extracted fulvic acids were characterized by high nitrogen, acidic functional group and phenolic hydroxyl contents that might have(More)
The suitability of olive mill wastewater (OMW) for composting was studied by the addition of this liquid waste to a mixture of cotton gin waste and sewage sludge, and its composting was compared with that of another pile of similar composition, but without olive mill wastewater. Both piles were composted by the Rutgers static pile system in a pilot plant.(More)
The evaluation of the most suitable aeration technology for olive-mill by-product "alperujo" (AL) composting was carried out by using two identical piles prepared by mixing AL with a bulking agent (fresh cow bedding) and a mature compost (as inoculant). Forced ventilation was employed in conjunction with mechanical turning in one of the piles, whereas only(More)