Learn More
Specific transcription in late G1, mediated by the transcription factors SBF (Swi4p-Swi6p) and MBF (Mbp1p-Swi6p), is crucial for cell cycle progression in budding yeast. In order to better understand the G1/S transition, we initiated a search for conditional mutations synthetic lethal with swi4delta. One of the isolated mutants, rsf8swi4delta, showed a(More)
The Saccharomyces cerevisiae Start repressor Whi5, the functional analogue of mammalian pRB, shuttles between the nucleus and the cytoplasm throughout the cell cycle: enters into the nucleus at the end of mitosis and remains nuclear until Start. We studied the mechanisms involved in this spatial regulation. The nuclear import depends on the(More)
The transcription factor Swi4p plays a crucial role in the control of the initiation of the cell cycle in budding yeast. To further understand Swi4p function, we set up a synthetic lethal screen for genes interacting with SWI4. Fourteen conditional mutations which resulted in lethality only in the absence of SWI4 have been isolated. Only two of them were(More)
The rsf12 mutation was isolated in a synthetic lethal screen for genes functionally interacting with Swi4. RSF12 is CLB5. The clb5 swi4 mutant cells arrest at G(2)/M due to the activation of the DNA-damage checkpoint. Defects in DNA integrity was confirmed by the increased rates of chromosome loss and mitotic recombination. Other results suggest the(More)
The Saccharomyces cerevisiae POT1 gene is, as are other yeast peroxisomal protein genes, inducible by fatty acids and repressible by glucose. We have now found that it is also induced during the stationary phase of the culture. To investigate these three regulatory circuits, we have studied the mRNA levels of regulatory mutants as well as the changes in(More)
Analysis of a three-member gene family in the yeast Saccharomyces cerevisiae has allowed the discovery of a new gene that comprises two contiguous open reading frames previously annotated as YML034w and YML033w. The gene contains a small intron with two alternative 5' splicing sites. It is specifically transcribed during G(2)/M in the cell cycle and after(More)
We have previously shown that some changes occur in the chromatin structure of the 3' flank of the yeast SUC2 gene in going from a repressed to an active state. In an attempt to find out the causes of these changes, we have carried out experiments in which mutant copies of SUC2 locus lacking either 5' or 3' flanks have been analysed for their(More)
The control of the subcellular localization of cell cycle regulators has emerged as a crucial mechanism in the regulation of cell division. In the present work, we have characterized the function of the karyopherin Msn5p in the control of the cell cycle of Saccharomyces cerevisiae. Phenotypic analysis of the msn5 mutant revealed an increase in cell size and(More)
We studied the consequences of adr1 and snf1 mutations on POT1 gene expression in different growth conditions. The results obtained reveal that ADR1 and SNF1 genes affect POT1 transcription in different ways: ADR1 has a minor role in derepression in low concentration of glucose but is essential for activation in stationary phase whereas SNF1 is essential(More)
ROT1 is an essential gene whose inactivation causes defects in cell cycle progression and morphogenesis in budding yeast. Rot1 affects the actin cytoskeleton during the cell cycle at two levels. First, it is required for the maintenance of apical growth during bud growth. Second, Rot1 is necessary to polarize actin cytoskeleton to the neck region at the end(More)