Juan Carlos Fraile Marinero

Learn More
Human motor performance, speed and variability are highly susceptible to emotional states. This paper reviews the impact of the emotions on the motor control performance, and studies the possibility of improving the perceived skill/challenge relation on a multimodal neural rehabilitation scenario, by means of a biocybernetic controller that modulates the(More)
This paper presents a distributed planning and control architecture for autonomous Multi-Manipulator Systems (MMS). The control architecture is implemented using an agent-based approach. A team of distributed and autonomous agents is deployed to model the flexible assembly system in such a way that the agents negotiate, collaborate, and cooperate to achieve(More)
This paper is focused in the design and implementation of a robotic surgical motion controller. The proposed control scheme addresses the issues related to the application of a robot assistant in novel surgical scenario, which combines hand assisted laparoscopic surgery (HALS) with the single incision laparoscopic surgery (SILS) techniques. It is designed(More)
”Human state aware” systems, may be able to improve physical human-robot interaction (pHRI) by adapting their behavior and cooperation level accordingly to human psychophysiological feedback. This paper reviews the impact of the emotions on the motor control performance, and studies the possibility of improving the perceived skill/challenge(More)
Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory(More)