Learn More
The Pt(IV) complex cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] is photoactivated by near infrared light (980 nm) using NaYF4:Yb(3+)/Tm(3+)@NaYF4 core-shell upconversion nanoparticles. Coupling of this cisplatin precursor with the biocompatible PEGylated phospholipid DSPE-PEG(2000)-NH2 affords a valuable approach to decorate the surface of the(More)
We attached the pathogen associated molecular pattern Kdo(2)-Lipid A (the lipopolysaccharide (LPS) from Escherichia coli (E. coli)) to QDs by hydrophobic interactions to synthetically mimic the surface of E. coli. QD-LPS conjugates bind, are taken up and activate effectively macrophages in vitro and they have potent immunostimulatory activity in vivo.
The activity of a Zn(II) complex of a tetradentate, tripodal ligand for catalyzing phosphodiester cleavage is enhanced 750-fold by introducing three hydrogen bond donors to the ligand. Inhibition studies show that the Zn-aqua complex is the kinetically active form and that it binds the transition state with a formal dissociation constant of 3 x 108 M-1. The(More)
We demonstrate that QDs coated with nitrilotriacetic acid (NTA) bound to Ni (2+) can be used to reversibly and selectively bind, purify, and fluorescently label His 6-tagged (N-terminal) glutathione S-transferase (GST) in one step with retention of enzymatic activity. We find binding to be less effective in the absence of the His 6-tag or Ni (2+) ions.
Development of vaccines to prevent and treat emerging new pathogens and re-emerging infections and cancer remains a major challenge. An attractive approach is to build the vaccine upon a biocompatible NP that simultaneously acts as accurate delivery vehicle and radiotracer for PET/SPECT imaging for ultrasensitive and quantitative in vivo imaging of NP(More)
The catalysis of phosphoryl transfer by metal ions has been intensively studied in both biological and artificial systems, but the status of the transient pentacoordinate phosphoryl species (as transition state or intermediate) is the subject of considerable debate. We report that dinuclear metal ion complexes that incorporate second sphere hydrogen bond(More)
The success of nanoparticle-based therapies will depend in part on accurate delivery to target receptors and organs. There is, therefore, considerable potential in nanoparticles which achieve delivery of the right drug(s) using the right route of administration to the right location at the right time, monitoring the process by non-invasive molecular(More)