Juan Antonio Guadix

Learn More
The epicardial epithelial-mesenchymal transition (EMT) is hypothesized to generate cardiovascular progenitor cells that differentiate into various cell types, including coronary smooth muscle and endothelial cells, perivascular and cardiac interstitial fibroblasts and cardiomyocytes. Here we show that an epicardial-specific knockout of the gene encoding(More)
Cardiomyocytes from human pluripotent stem cells (hPSC-CM) have many potential applications in disease modelling and drug target discovery but their phenotypic similarity to early fetal stages of cardiac development limits their applicability. In this study we compared contraction stresses of hPSC-CM to 2nd trimester human fetal derived cardiomyocytes(More)
Previous studies of knock-out mouse embryos have shown that the Wilms' tumor suppressor gene (Wt1) is indispensable for the development of kidneys, gonads, heart, adrenals and spleen. Using OPT (Optical Projection Tomography) we have found a new role for Wt1 in mouse liver development. In the absence of Wt1, the liver is reduced in size, and shows lobing(More)
RATIONALE The proepicardium is a transient structure comprising epicardial progenitor cells located at the posterior limit of the embryonic cardiac inflow. A network of signals regulates proepicardial cell fate and defines myocardial and nonmyocardial domains at the venous pole of the heart. During cardiac development, epicardial-derived cells also(More)
Coronary vessel formation is a special case in the context of embryonic vascular development. A major part of the coronary cellular precursors (endothelial, smooth muscle, and fibroblastic cells) derive from the proepicardium and the epicardium in what can be regarded as a late event of angioblastic and smooth muscle cell differentiation. Thus, coronary(More)
Epicardial-derived signals are key regulators of cardiac embryonic development. An important part of these signals is known to relate to a retinoic acid (RA) receptor-dependent mechanism. RA is a potent morphogen synthesised by Raldh enzymes, Raldh2 being the predominant one in mesodermal tissues. Despite the importance of epicardial retinoid signalling in(More)
The epicardium has recently been identified as an active and essential element of cardiac development. Recent reports have unveiled a variety of functions performed by the embryonic epicardium, as well as the cellular and molecular mechanisms regulating them. However, despite its developmental importance, a number of unsolved issues related to embryonic(More)
The developing liver is vascularized through a complex process of vasculogenesis that leads to the differentiation of the sinusoids. The main structural elements of the sinusoidal wall are endothelial and stellate (Ito) cells. We have studied the differentiation of the hepatic sinusoids in avian embryos through confocal colocalization of differentiation(More)
Colocalization of fluorescent signals in confocal microscopy is usually evaluated by inspecting merged images from different colour channels or by using commercially available software packages. We describe in this paper a simple method for assessment of nuclear localization of proteins in tissue sections through confocal immunolocalization, propidium(More)
Recent advances in the field of cell therapy and regenerative medicine describe mesenchymal stem cells (MSCs) as potential biological products due to their ability to self-renew and differentiate. MSCs are multipotent adult cells with immunomodulatory and regenerative properties, and, given their therapeutic potential, they are being widely studied in order(More)