Juan Alfonso Lara

Learn More
OBJECTIVES We present a framework specially designed to deal with structurally complex data, where all individuals have the same structure, as is the case in many medical domains. A structurally complex individual may be composed of any type of single-valued or multivalued attributes, including time series, for example. These attributes are structured(More)
The comparison of two time series and the extraction of subsequences that are common to the two is a complex data mining problem. Many existing techniques, like the Discrete Fourier Transform (DFT), offer solutions for comparing two whole time series. Often, however, the important thing is to analyse certain regions, known as events, rather than the whole(More)
There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time(More)
Creating a reference model that represents a given set of time series is a relevant problem as it can be applied to a wide range of tasks like diagnosis, decision support, fraud detection, etc. In some domains, like seismography or medicine, the relevant information contained in the time series is concentrated in short periods of time called events. In this(More)
The focus of this chapter is to study feature extraction and pattern classification methods from two medical areas, Stabilometry and Electroencephalography (EEG). Stabilometry is the branch of medicine responsible for examining balance in human beings. Balance and dizziness disorders are probably two of the most common illnesses that physicians have to deal(More)
Stabilometry is a branch of medicine that studies balance-related human functions. Stabilometric systems generate time series. The analysis of these time series using data mining techniques can be very useful for domain experts. In the field of stabilometry, as in many other domains, the key nuggets of information in a time series are concentrated within(More)