Learn More
Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is(More)
Long interspersed nuclear elements (L1 or LINE-1) are the most abundant and active retroposons in the mammalian genome. Traditionally, the bulk of L1 sequences have been explained by the 'selfish DNA' hypothesis; however, recently it has been also argued that L1s could play an important role in genome and gene organizations. The non-random chromosomal(More)
The chromosomal distribution of mobile genetic elements is scarcely known in Arvicolinae species, but could be of relevance to understand the origin and complex evolution of the sex chromosome heterochromatin. In this work we cloned two retrotransposon sequences, L1 and SINE-B1, from the genome of Chionomys nivalis and investigated their chromosomal(More)
Arvicolid rodents present both synaptic and asynaptic sex chromosomes. We analyzed the pairing behaviour of sex chromosomes in two species belonging to this rodent group (Microtus nivalis and Arvicola sapidus). At pachynema, the sex chromosomes of both species paired in a small region while the rest remain unsynapsed. Consequently at metaphase I, sex(More)
Mutations in the MCPH1 gene cause primary microcephaly associated with a unique cellular phenotype of misregulated chromosome condensation. The encoded protein contains three BRCT domains, and accumulating data show that MCPH1 is involved in the DNA damage response. However, most of this evidence has been generated by experiments using RNA interference(More)
The two Iberian species of pine voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus of the subfamily Arvicolinae (Cricetidae, Rodentia), were compared after G- and C-banding and chromosomal mapping of ribosomal RNA genes (rDNA), telomeric repeats, and satellite DNA Msat-160. Notwithstanding their close relationship (one sister group in(More)
The genus Microtus presents several species with extremely large sex chromosomes that contain large blocks of constitutive heterochromatin. Several cytogenetic and molecular studies of the repetitive sequences in species of the genus Microtus have demonstrated that the heterochromatin is highly heterogeneous. We have cloned and characterized a family of(More)
Sex chromosomes in species of the genus Microtus present some characteristic features that make them a very interesting group to study sex chromosome composition and evolution. M. cabrerae and M. agrestis have enlarged sex chromosomes (known as 'giant sex chromosomes') due to the presence of large heterochromatic blocks. By chromosome microdissection, we(More)
In most mammals, the Y chromosome is composed of a large amount of constitutive heterochromatin. In some Microtus species, this feature is also extended to the X chromosome, resulting in enlarged (giant) sex chromosomes. Several repeated DNA sequences have been described in the gonosomal heterochromatin of these species, indicating that it has heterogeneous(More)
Sex chromosome evolution in mammals has been extensively investigated through chromosome-painting analyses. In some rodent species from the subfamily Arvicolinae the sex chromosomes contain remarkable features such as giant size, a consequence of heterochromatic enlargement, or asynaptic behaviour during male meiosis. Here, we have made a comparative study(More)