Learn More
Nucleation and kinetics of defects at the atomic scale provide the most fundamental information about the mechanical response of materials and surfaces. Recent advances in experimental and computational analyses allow us to study this phenomenon in the context of nanoindentation and localized mechanical probing of surfaces. Here, we present an analytical(More)
To assess local retinal function in patients with retinitis pigmentosa (RP), multi-focal ERGs and local thresholds (static visual fields) were obtained on eight RP patients with visual acuities of 20/25 or better. All eight patients showed multi-focal responses with normal timing within the central 5 deg. However, there were few responses with normal timing(More)
Nanometre-scale contact experiments and simulations demonstrate the potential to probe incipient plasticity--the onset of permanent deformation--in crystals. Such studies also point to the need for an understanding of the mechanisms governing defect nucleation in a broad range of fields and applications. Here we present a fundamental framework for(More)
Graphene-based sp 2-carbon nanostructures such as carbon nanotubes and nanofibers can fail near their ideal strengths due to their exceedingly small dimensions. We have calculated the phonon spectra of graphene as a function of uniaxial tension by density functional perturbation theory to assess the first occurrence of phonon instability on the strain path,(More)
Recent advances in nanotechnology have stimulated novel applications in biomedicine where nanoparticles (NPs) are used to achieve drug delivery and photodynamic therapy. In chemotherapeutic cancer treatment, tumor-specific drug delivery is a topic of considerable research interest for achieving enhanced therapeutic efficacy and for mitigating adverse side(More)
We report the creation of a nanoscale electrochemical device inside a transmission electron microscope--consisting of a single tin dioxide (SnO(2)) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO(2)) cathode--and the in situ observation of the lithiation of the SnO(2) nanowire during electrochemical charging. Upon(More)
Nano-twinned copper exhibits an unusual combination of ultrahigh strength and high ductility, along with increased strain-rate sensitivity. We develop a mechanistic framework for predicting the rate sensitivity and elucidating the origin of ductility in terms of the interactions of dislocations with interfaces. Using atomistic reaction pathway calculations,(More)
The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation; however, systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin--a hormone best known for its role in lactation, parturition and social(More)