2Aidong Han
2Lin Chen
1Grigory S Filonov
Learn More
Transcription co-activators CBP and p300 are recruited by sequence-specific transcription factors to specific genomic loci to control gene expression. A highly conserved domain in CBP/p300, the TAZ2 domain, mediates direct interaction with a variety of transcription factors including the myocyte enhancer factor 2 (MEF2). Here we report the crystal structure(More)
The pleckstrin homology (PH) domain of the general receptor for phosphoinositides 1 (GRP1) exhibits specific, high-affinity, reversible binding to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) at the plasma membrane, but the nature and extent of the interaction between this bound complex and the surrounding membrane environment remains unclear.(More)
  • Ju He, Mohsin Vora, Rachel M Haney, Grigory S Filonov, Catherine A Musselman, Christopher G Burd +4 others
  • 2009
The FYVE domain associates with phosphatidylinositol 3-phosphate [PtdIns(3)P] in membranes of early endosomes and penetrates bilayers. Here, we detail principles of membrane anchoring and show that the FYVE domain insertion into PtdIns(3)P-enriched membranes and membrane-mimetics is substantially increased in acidic conditions. The EEA1 FYVE domain binds to(More)
Size effect of multiferroics is important for its potential applications in new type miniaturized multifunctional devices and thus has been widely studied. However, is there special size effect in the materials with spiral modulated spin structure (such as BiFeO3)? It is still an issue to be investigated. In this report, structural, magnetic and(More)
Methods for detecting circulating microRNAs (miRNAs), small RNAs that control gene expression, at high sensitivity and specificity in the blood have been reported in recent studies. The goal of this study was to determine if detectable levels of specific miRNAs are released into the circulation for bevacizumab-induced cardiotoxicity. A miRNA array analysis(More)
  • Nimanthi Jayathilaka, Aidong Han, Kevin J. Gaffney, Raja Dey, Jamie A. Jarusiewicz, Kaori Noridomi +7 others
  • 2012
Enzymes that modify the epigenetic status of cells provide attractive targets for therapy in various diseases. The therapeutic development of epigenetic modulators, however, has been largely limited to direct targeting of catalytic active site conserved across multiple members of an enzyme family, which complicates mechanistic studies and drug development.(More)
OBJECTIVE Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using(More)
  • 1