Ju-Chiang Wang

Learn More
Modeling the association between music and emotion has been considered important for music information retrieval and affective human computer interaction. This paper presents a novel generative model called acoustic emotion Gaussians (AEG) for computational modeling of emotion. Instead of assigning a music excerpt with a deterministic (hard) emotion label,(More)
One of the most exciting but challenging endeavors in music research is to develop a computational model that comprehends the affective content of music signals and organizes a music collection according to emotion. In this paper, we propose a novel acoustic emotion Gaussians (AEG) model that defines a proper generative process of emotion perception in(More)
Audio tags correspond to keywords that people use to describe different aspects of a music clip, such as the genre, mood, and instrumentation. Since social tags are usually assigned by people with different levels of musical knowledge, they inevitably contain noisy information. By treating the tag counts as costs, we can model the audio tagging problem as a(More)
Music auto-tagging refers to automatically assigning semantic labels (tags) such as genre, mood and instrument to music so as to facilitate text-based music retrieval. Although significant progress has been made in recent years, relatively little research has focused on semantic labels that are time-varying within a track. Existing approaches and datasets(More)
Audio tags correspond to keywords that people use to describe different aspects of a music clip. With the explosive growth of digital music available on the Web, automatic audio tagging, which can be used to annotate unknown music or retrieve desirable music, is becoming increasingly important. This can be achieved by training a binary classifier for each(More)
There has been an increasing attention on learning feature representations from the complex, high-dimensional audio data applied in various music information retrieval (MIR) problems. Unsupervised feature learning techniques, such as sparse coding and deep belief networks have been utilized to represent music information as a term-document structure(More)
Due to the cold-start problem, measuring the similarity between two pieces of audio music based on their low-level acoustic features is critical to many Music Information Retrieval (MIR) systems. In this paper, we apply the bag-offrames (BOF) approach to represent low-level acoustic features of a song and exploit music tags to help improve the performance(More)
This paper presents a novel content-based system that utilizes the perceived emotion of multimedia content as a bridge to connect music and video. Specifically, we propose a novel machine learning framework, called Acousticvisual Emotion Guassians (AVEG), to jointly learn the tripartite relationship among music, video, and emotion from an emotion-annotated(More)
Personalization techniques can be applied to address the subjectivity issue of music emotion recognition, which is important for music information retrieval. However, achieving satisfactory accuracy in personalized music emotion recognition for a user is difficult because it requires an impractically huge amount of annotations from the user. In this paper,(More)
Audio tags describe different types of musical information such as genre, mood, and instrument. This paper aims to automatically annotate audio clips with tags and retrieve relevant clips from a music database by tags. Given an audio clip, we divide it into several homogeneous segments by using an audio novelty curve, and then extract audio features from(More)