Learn More
Vertically aligned large-area p-Cu(2)O/n-AZO (Al-doped ZnO) radial heterojunction nanowire arrays were synthesized on silicon without using catalysts in thermal chemical vapor deposition followed by e-beam evaporation. Scanning electron microscopy and high-resolution transmission electron microscopy results show that poly-crystalline Cu(2)O nano-shells with(More)
Arrays of single-crystalline Al doped ZnO rectangular nanorods were synthesized and nucleated from single-crystalline ZnO nanosheets by thermal chemical vapor deposition. The rectangular nanorods were grown from the periodic thicker regions of the nanosheets, associated with Al concentration fluctuation and evidenced from electron energy loss spectroscopy.(More)
Nonionic surfactant as liquid organic template and tetraethoxysilane as silica precursor were used for the synthesis of mesoporous silica with ordered arrangement of nanopores (diameters are about 1-6 nm). The synthesized mesoporous silica was used as the template for the synthesis of ZnO nanoparticles using zinc acetylacetonate as ZnO precursor. The as(More)
Al doped ZnO nanowire arrays with controlled growth densities were fabricated on silicon without using catalysts via sputtering followed by thermal chemical vapor deposition (CVD). Scanning electron microscopy and high-resolution transmission electron microscopy results show that the Al:ZnO single-crystalline nanowires synthesized by CVD prefer growing(More)
Mono to few-layer graphene were prepared on pre-annealed polycrystalline nickel substrates by chemical vapor deposition at a relatively low temperature of 800 degrees C using fast cooling rate. It was observed that the reduced solubility of Carbon in Ni at low temperature and an optimum gas mixing ratio (CH4:H2 = 60/80 (sccm)) can be used to synthesize(More)
Single-crystalline ZnO nanorods emitting two characteristic optical emissions from opposite halves of the nanorods were synthesized by thermal chemical vapor deposition using Zn/Al mixed powders. Energy dispersive x-ray spectra with transmission electron microscopy show a gradually decreasing Zn:O atomic ratio from the root to the top of a nanorod, and the(More)
  • 1