Learn More
The initial glucuronidation rates were determined for eight recombinant human UDP-glucuronosyltransferases (UGTs) of the 1A subfamily, and the bisubstrate kinetics and inhibition patterns were analyzed. At low substrate concentrations, the reactions followed general ternary complex kinetics, whereas at higher concentrations of both substrates, the reactions(More)
Tacrine (1,2,3,4-tetrahydro-9-aminoacridine) is a reversible cholinesterase inhibitor used perorally for Alzheimer s disease (1). Oral administration of tacrine is associated with a low bioavailability (due to the gut-wall first-pass effect), a short elimination half-life (2), a reversible, dose-dependent hepatotoxicity, and peripheral cholinenergic side(More)
Eight human liver UDP-glucuronosyltransferases (UGTs) were expressed in baculovirus-infected insect cells as fusion proteins carrying a short C-terminal extension that ends with 6 histidine residues (His tag). The activity of recombinant UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B15 was almost fully inhibited by 0.2% Triton X-100. In the case(More)
During the last few years, a number of interesting drug delivery applications of mesoporous materials have been demonstrated. Mesoporous silicon has many important properties advantageous to drug delivery applications. The small size of the pores confines the space of a drug and engages the effects of surface interactions of the drug molecules and the pore(More)
Mesoporous silicon (PSi) microparticles were produced using thermal carbonization (TCPSi) or thermal oxidation (TOPSi) to obtain surfaces suitable for oral drug administration applications. The loading of five model drugs (antipyrine, ibuprofen, griseofulvin, ranitidine and furosemide) into the microparticles and their subsequent release behaviour were(More)
Mesoporous silicon particles hold great potential in improving the solubility of otherwise poorly soluble drugs. To effectively translate this feature into the clinic, especially via oral or parenteral administration, a thorough understanding of the interactions of the micro- and nanosized material with the physiological environment during the delivery(More)
For the first time the feasibility of siliceous mesoporous material TUD-1 (Technische Universiteit Delft) for drug delivery was studied. Model drug, ibuprofen, was adsorbed into TUD-1 mesopores via a soaking procedure. Characterizations with nitrogen adsorption, XRD, TG, HPLC and DSC demonstrated the successful inclusion of ibuprofen into TUD-1 host. The(More)
Thermosensitive polymers poly(N-isopropylacrylamide) (PNIPAM), poly(N-vinylcaprolactam) (PVCL) and PVCL grafted with amphiphilic poly(ethylene oxide) (PEO) chains (PVCL-graft-C11EO42) were prepared and characterized and their putative cytotoxicity was evaluated. The cytotoxicity of these thermosensitive polymers and their monomers was investigated as a(More)
Nanofibrillar cellulose (NFC) (also referred to as cellulose nanofibers, nanocellulose, microfibrillated, or nanofibrillated cellulose) has gotten recent and wide attention in various research areas. Here, we report the application of nanofibrillar cellulose as a matrix-former material for long-lasting (up to three months) sustained drug delivery. Film-like(More)
OBJECTIVES To explore the possible role of hetero-oligomerization among the human UDP-glucuronosyltransferases in attenuating the consequences of the pathological Y486D mutation (UGT1A1 numbering) that often causes hyperbilirubinaemia. Owing to exon sharing in the human UGT1A gene, the equivalent mutation is present in all other UGT1As of the affected(More)