Learn More
Atherosclerosis is a diffuse arterial disease developing over many years and resulting in a complicated three-dimensional arterial morphology. The arterial wall material properties have been demonstrated to show regional alterations with atheroma development and growth. We present a mechanical analysis of diseased arterial segments reconstructed from(More)
Kinetic information during human gait can be estimated with inverse dynamics, which is based on anthropometric, kinematic, and ground reaction data. While collecting ground reaction data with a force plate is useful, it is costly and requires regulated space. The goal of this study was to propose a new, accurate methodology for predicting ground reaction(More)
BACKGROUND During a golf swing, analysis of the movement in upper torso and pelvis is a key step to determine a motion control strategy for accurate and consistent shots. However, a majority of previous studies that have evaluated this movement limited their analysis only to the rotational movement of segments, and translational motions were not examined.(More)
BACKGROUND When the human body is introduced to a new motion or movement, it learns the placement of different body parts, sequential muscle control, and coordination between muscles to achieve necessary positions, and it hones this new skill over time and repetition. Previous studies have demonstrated definite differences in the smoothness of body(More)
In this research, we investigated the coordination pattern and consistency of coordination between the thorax and pelvis during gait in patients with idiopathic scoliosis. Across the study, 69 adolescent girls (controls: 30, patients: 39) participated. All participants were asked to walk 10 m barefoot at a self-selected speed. The walking speed, stride(More)
The aim of this research was to quantify the coordination pattern between thorax and pelvis during a golf swing. The coordination patterns were calculated using vector coding technique, which had been applied to quantify the coordination changes in coupling angle (γ) between two different segments. For this, fifteen professional and fifteen amateur golfers(More)
In general, three-dimensional ground reaction forces (GRFs) and ground reaction moments (GRMs) that occur during human gait are measured using a force plate, which are expensive and have spatial limitations. Therefore, we proposed a prediction model for GRFs and GRMs, which only uses plantar pressure information measured from insole pressure sensors with a(More)
Biomechanical understanding of the knee joint during a golf swing is essential to improve performance and prevent injury. In this study, we quantified the flexion/extension angle and moment as the primary knee movement, and evaluated quasi-stiffness represented by moment-angle coupling in the knee joint. Eighteen skilled and 23 unskilled golfers(More)
Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and(More)