Joung-Hun Kim

Learn More
Excitatory and inhibitory inputs converge on single neurons and are integrated into a coherent output. Although much is known about short-term integration, little is known about how neurons sum opposing signals for long-term synaptic plasticity and memory storage. In Aplysia, we find that when a sensory neuron simultaneously receives inputs from the(More)
Synapse-specific facilitation requires rapamycin-dependent local protein synthesis at the activated synapse. In Aplysia, rapamycin-dependent local protein synthesis serves two functions: (1) it provides a component of the mark at the activated synapse and thereby confers synapse specificity and (2) it stabilizes the synaptic growth associated with long-term(More)
The time course and functional significance of the structural changes associated with long-term facilitation of Aplysia sensory to motor neuron synaptic connections in culture were examined by time-lapse confocal imaging of individual sensory neuron varicosities labeled with three different fluorescent markers: the whole-cell marker Alexa-594 and two(More)
Application of Clostridium difficile toxin B, an inhibitor of the Rho family of GTPases, at the Aplysia sensory to motor neuron synapse blocks long-term facilitation and the associated growth of new sensory neuron varicosities induced by repeated pulses of serotonin (5-HT). We have isolated cDNAs encoding Aplysia Rho, Rac, and Cdc42 and found that Rho and(More)
Neuroligin-1 is a potent trigger for the de novo formation of synaptic connections, and it has recently been suggested that it is required for the maturation of functionally competent excitatory synapses. Despite evidence for the role of neuroligin-1 in specifying excitatory synapses, the underlying molecular mechanisms and physiological consequences that(More)
The time course of the requirement for local protein synthesis in the stabilization of learning-related synaptic growth and the persistence of long-term memory was examined using Aplysia bifurcated sensory neuron-motor neuron cultures. We find that, following repeated pulses of serotonin (5-HT), the local perfusion of emetine, an inhibitor of protein(More)
At Aplysia sensory-to-motor neuron synapses, the inhibitory neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa) produces depression, and serotonin (5-HT) produces facilitation. Short-term depression has been found to result from the activation of a phospholipase A2. The released arachidonate is metabolized by 12-lipoxygenase to active second messengers. We find that(More)
Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer’s disease (AD)-associated amyloid β-protein (Aβ). Despite their ubiquitous presence and the inclusion of components which can potentially interact with Aβ, the role of exosomes in regulating synaptic dysfunction(More)
Extracellular ATP has recently been identified as an important regulator of cell death in response to pathological insults. When SN4741 cells, which are dopaminergic neurons derived from the substantia nigra of transgenic mouse embryos, are exposed to ATP, cell death occurs. This cell death is associated with prominent cell swelling, loss of ER integrity,(More)
MicroRNAs (miRNAs) have recently come to be viewed as critical players that modulate a number of cellular features in various biological systems including the mature CNS by exerting regulatory control over the stability and translation of mRNAs. Despite considerable evidence for the regulatory functions of miRNAs, the identities of the miRNA species that(More)