Learn More
Using a simple method of mass production of green carbon nanotags (G-tags) from harmful cyanobacteria, we developed an advanced and efficient imaging platform for the purpose of anticancer therapy. Approximately 100 grams of G-tags per 100 kilograms of harmful cyanobacteria were prepared using our eco-friendly approach. The G-tags possess high solubility,(More)
It is known that water purified by conventional TiO2 photocatalysts may not be safe enough for drinking, due to the toxicity by tiny existence of TiO2 nanoparticles after water treatment. We herein demonstrate a facile design of a three-dimensional (3D) TiO2 photocatalyst structure with which both the efficiency of purification and the safety level of the(More)
Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for(More)
Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural(More)
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we(More)
We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high(More)
Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents.(More)
  • 1