Jouhahn Lee

  • Citations Per Year
Learn More
Using a simple method of mass production of green carbon nanotags (G-tags) from harmful cyanobacteria, we developed an advanced and efficient imaging platform for the purpose of anticancer therapy. Approximately 100 grams of G-tags per 100 kilograms of harmful cyanobacteria were prepared using our eco-friendly approach. The G-tags possess high solubility,(More)
We have developed a simple approach for the large-scale synthesis of water-soluble green carbon nanodots (G-dots) from many kinds of large food waste-derived sources. About 120 g of G-dots per 100 kg of food waste can be synthesized using our simple and environmentally friendly synthesis approach. The G-dots exhibit a high degree of solubility in water(More)
It is known that water purified by conventional TiO2 photocatalysts may not be safe enough for drinking, due to the toxicity by tiny existence of TiO2 nanoparticles after water treatment. We herein demonstrate a facile design of a three-dimensional (3D) TiO2 photocatalyst structure with which both the efficiency of purification and the safety level of the(More)
We have investigated the cytotoxic assay of Fe-aminoclay (FeAC) nanoparticles (NPs) and simultaneous imaging in HeLa cells by photoluminescent carbon nanodots (CD) conjugation. Non-cytotoxic, photostable, and CD NPs are conjugated with cationic FeAC NPs where CD NPs play a role in bio-imaging and FeAC NPs act as a substrate for CD conjugation and help to(More)
Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural(More)
We report highly active visible-light driven nitrogen-doped three-dimensional polycrystalline anatase TiO2 photocatalysts (N-3D TiO2) for environmental and biomedical applications. N-3D TiO2 is synthesized at a low temperature (<90°C) without thermal treatment via a modified hydrothermal process (HP) and ultrasound irradiation (UI). The N-3D TiO2 is(More)
Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for(More)
Recently, the appeal of 2D black phosphorus (BP) has been rising due to its unique optical and electronic properties with a tunable band gap (≈0.3-1.5 eV). While numerous research efforts have recently been devoted to nano- and optoelectronic applications of BP, no attention has been paid to promising medical applications. In this article, the preparation(More)