Jostein Malmo

Learn More
The success of gene therapy depends on efficient delivery of DNA and requires a vector. A promising non-viral vector is chitosan. We tailored chitosan to optimize it for transfection by synthesizing self-branched and trisaccharide-substituted chitosan oligomers (SBTCO), which show superior transfection efficacy compared with linear chitosan (LCO). The aim(More)
Chitosan has gained increasing interest for siRNA delivery. Although chitosan covers a family of structurally different polysaccharides, most siRNA delivery studies have been performed with conventional partially N-acetylated chitosans. Herein, the purpose was to identify fundamental chitosan molecular properties favoring siRNA delivery and efficient gene(More)
The blood-brain barrier (BBB), composed of tightly organized endothelial cells, limits the availability of drugs to therapeutic targets in the central nervous system. The barrier is maintained by membrane bound efflux pumps efficiently transporting specific xenobiotics back into the blood. The efflux pump P-glycoprotein (P-gp), expressed at high levels in(More)
Chitosan possesses many characteristics of an ideal gene delivery system. However, the transfection efficiency of conventional chitosans is generally found to be low. In this study, we investigated the self-branching of chitosans as a strategy to improve its gene transfer properties without compromising its safety profile. Self-branched (SB) and(More)
Human metapneumovirus (hMPV) causes severe airway infection in children that may be caused by an unfavorable immune response. The nature of the innate immune response to hMPV in naturally occurring infections in children is largely undescribed, and it is unknown if inflammasome activation is implicated in disease pathogenesis. We examined nasopharynx(More)
  • 1