Josiane Zerubia

Learn More
In this paper, we have derived analytic expressions for the phase correlation of downsampled images. We have shown that for downsampled images the signal power in the phase correlation is not concentrated in a single peak, but rather in several coherent peaks mostly adjacent to each other. These coherent peaks correspond to the polyphase transform of a(More)
We present a supervised classification model based on a variational approach. This model is devoted to find an optimal partition composed of homogeneous classes with regular interfaces. The originality of the proposed approach concerns the definition of a partition by the use of level sets. Each set of regions and boundaries associated to a class is defined(More)
Confocal laser scanning microscopy is a powerful and popular technique for 3D imaging of biological specimens. Although confocal microscopy images are much sharper than standard epifluorescence ones, they are still degraded by residual out-of-focus light and by Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed(More)
Synthetic aperture radar (SAR) imagery has found important applications due to its clear advantages over optical satellite imagery one of them being able to operate in various weather conditions. However, due to the physics of the radar imaging process, SAR images contain unwanted artifacts in the form of a granular look which is called speckle. The(More)
We comprehensively study the least-squares Gaussian approximations of the diffraction-limited 2D-3D paraxial-nonparaxial point-spread functions (PSFs) of the wide field fluorescence microscope (WFFM), the laser scanning confocal microscope (LSCM), and the disk scanning confocal microscope (DSCM). The PSFs are expressed using the Debye integral. Under an(More)
We introduce a new class of active contour models that hold great promise for region and shape modelling, and we apply a special case of these models to the extraction of road networks from satellite and aerial imagery. The new models are arbitrary polynomial functionals on the space of boundaries, and thus greatly generalize the linear functionals used in(More)
Blind image deconvolution: theory and applications Images are ubiquitous and indispensable in science and everyday life. Mirroring the abilities of our own human visual system, it is natural to display observations of the world in graphical form. Images are obtained in areas 1 2 Blind Image Deconvolution: problem formulation and existing approaches ranging(More)
We present a new approach for building reconstruction from a single Digital Surface Model (DSM). It treats buildings as an assemblage of simple urban structures extracted from a library of 3D parametric blocks (like a LEGO set). First, the 2D-supports of the urban structures are extracted either interactively or automatically. Then, 3D-blocks are placed on(More)
In this paper, we propose to use a hidden Markov tree modeling of the complex wavelet packet transform, to capture the inter-scale dependencies of natural images. First, the observed image, blurred and noisy, is deconvolved without regularization. Then its transform is denoised within a Bayesian framework using the proposed model, whose parameters are(More)
This paper addresses the problem of unsupervised extraction of line networks (for example, road or hydrographic networks) from remotely sensed images. We model the target line network by an object process, where the objects correspond to interacting line segments. The prior model, called "quality candy," is designed to exploit as fully as possible the(More)