Learn More
The primary structure of galectin-3, a approximately 30 kDa galactoside-binding protein (aka CBP-35, mL-34, hL-31, L-29, Mac-2, and epsilon BP), reveals two structural domains: an amino-terminal domain consists of a Pro-Gly-rich motif, and a globular carboxyl-terminal domain containing a carbohydrate-binding site. In this study, we report that the(More)
Binding of Trypanosoma cruzi trypomastigotes to laminin is enhanced by galectin-3, a beta-galactoside binding lectin. The galectin-3 enhanced binding of trypanosomes to laminin is inhibited by lactose. Co-immunoprecipitations indicate that galectin-3 binds to the 45, 32 and 30 kDa trypanosome surface proteins. Binding of galectin-3 to the 45, 32 and 30 kDa(More)
Galectin-3 has been suspected of modulating cell to extracellular matrix interactions in a novel fashion ever since it was first described. However, the rapid accumulation of research data in just the last 8 years alone has completely changed our perspective of this multifunctional protein. Its chimeric nature (consists of carbohydrate recognition and(More)
The precise mechanism by which galectin-3 and other cytosolic proteins that lack signal peptides are secreted is yet to be elucidated. In the present analyses, we determined that galectin-3, a beta-galactoside binding protein, can interact directly with membrane lipids in solid phase binding assays. More interestingly, we determined by spectrophotometric(More)
Galectin-3 is an important intracellular and extracellular lectin which is presumed to interact with extracellular matrix proteins and cell surface glycoproteins in normal and pathophysiological conditions. The exact physiological role of the protein is presently not known. We have previously demonstrated that recombinant human galectin-3 is a novel(More)
In the following experiments, we sought to understand the triggering mechanism which propels galectin-3 to be secreted into the extracellular compartment from its intracellular stores in breast carcinoma cells. We also wanted to analyze in greater details the role of galectin-3 in cellular adhesion and spreading. To do this, we made use of two pairs of(More)
Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abundant in serum and other extracellular fluids and contain a large repertoire of proteins, mRNA and microRNA. Exosomes have been implicated in cell to cell communication, the transfer of infectious agents, and neurodegenerative diseases as well as tumor(More)
Human galectin-3 binds to the surface of Trypanosoma cruzi trypomastigotes and human coronary artery smooth muscle (CASM) cells. CASM cells express galectin-3 on their surface and secrete it. Exogenous galectin-3 increased the binding of T. cruzi to CASM cells. Trypanosome binding to CASM cells was enhanced when either T. cruzi or CASM cells were(More)
Matrix metalloproteinases (MMPs), like other proteinases, can undergo autolytic degradation once activated in vivo. Whereas the activities of these enzymes are tightly regulated by tissue inhibitors of matrix metalloproteinases (TIMPs), it is not clear mechanistically how these enzymes are protected from autolysis in their active state. We previously(More)
The control of cellular adhesion to extracellular matrix proteins is poorly understood. In the present analyses, we set out to test the hypothesis that high galectin-3 concentration on the cell surface downregulates cellular adhesion to the extracellular matrix proteins. Various tumor cell lines were briefly incubated without or with galectin-3 and then(More)