Josiah A Bjorgaard

  • Citations Per Year
Learn More
Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could(More)
The photophysics of six bipyridyl platinum(II) bisstilbenylacetylide complexes with different auxiliary substituents are reported. These photophysical properties have been investigated in detail by UV-vis, photoluminescence (both at room temperature and at 77 K) and transient absorption (nanosecond and femtosecond) spectroscopies, as well as by linear(More)
We implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a(More)
PEG-derivatized corannulene compound has been found to be very effective in solubilizing single-walled carbon nanotubes in tetrahydrofuran. Solubilizing efficiency is close to the commonly used anionic surfactant, sodium dodecyl sulfate (SDS). Corannulene derivative has also been found to have a tendency to disperse metallic nanotubes more effectively than(More)
Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can(More)
Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of(More)
The role of polymer chain morphology on the optoelectronic properties of polythiophenes is an ongoing investigation with the promise of improving organic photovoltaic performance. Chain morphology is predominantly affected by torsional disorder, which causes localization of holes and electrons in the conjugated backbone. Using the model compound(More)
The synthesis and characterization of air stable Fe(II) coordination complexes with tetrazine and triazolo-tetrazine ligands and perchlorate counteranions have been achieved. Time-dependent density functional theory (TD-DFT) was used to model the structural, electrochemical, and optical properties of these materials. These compounds are secondary explosives(More)
Pentaerythritol tetranitrate (PETN), a high explosive, initiates with traditional shock and thermal mechanisms. In this study, the tetrazine-substituted derivative of PETN, pentaerythritol trinitrate chlorotetrazine (PetrinTzCl), is being investigated for a photochemical initiation mechanism that could allow control over the chemistry contributing to(More)
3D printing technology provides an affordable method of prototyping antennas. To design antennas with this technology it is necessary to characterize the materials used for printing precisely in terms of their permittivity and conductivity. Two major groups of materials for antenna design are dielectric and conductive materials. In this paper, we consider(More)