Joshua Zimmerberg

Learn More
Growth of the malaria parasite in human red blood cells (RBCs) is accompanied by an increased uptake of many solutes including anions, sugars, purines, amino acids and organic cations. Although the pharmacological properties and selectivity of this uptake suggest that a chloride channel is involved, the precise mechanism has not been identified. Moreover,(More)
The mechanism of bilayer unification in biological fusion is unclear. We reversibly arrested hemagglutinin (HA)-mediated cell-cell fusion right before fusion pore opening. A low-pH conformation of HA was required to form this intermediate and to ensure fusion beyond it. We present evidence indicating that outer monolayers of the fusing membranes were merged(More)
Biological membranes exhibit various function-related shapes, and the mechanism by which these shapes are created is largely unclear. Here, we classify possible curvature-generating mechanisms that are provided by lipids that constitute the membrane bilayer and by proteins that interact with, or are embedded in, the membrane. We describe membrane elastic(More)
We have compared hydration forces, electrical dipole potentials, and structural parameters of dispersions of dipalmitoylphosphatidylcholine (DPPC) and dihexadecylphosphatidylcholine (DHPC) to evaluate the influence of fatty acid carbonyl groups on phospholipid bilayers. NMR and x-ray investigations performed over a wide range of water concentrations in the(More)
Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large(More)
The energetics of a fusion pathway is considered, starting from the contact site where two apposed membranes each locally protrude (as "nipples") toward each other. The equilibrium distance between the tips of the two nipples is determined by a balance of physical forces: repulsion caused by hydration and attraction generated by fusion proteins. The energy(More)
The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance,(More)
The GTPase dynamin is critically involved in membrane fission during endocytosis. How does dynamin use the energy of GTP hydrolysis for membrane remodeling? By monitoring the ionic permeability through lipid nanotubes (NT), we found that dynamin was capable of squeezing NT to extremely small radii, depending on the NT lipid composition. However, long(More)
Membrane fusion in exocytosis, intracellular trafficking, and enveloped viral infection is thought to be mediated by specialized proteins acting to merge membrane lipid bilayers. We now show that one class of naturally-occurring phospholipids, lysolipids, inhibits fusion between cell membranes, organelles, and between organelles and plasma membrane.(More)
The homotypic fusion of sea urchin egg cortical vesicles (CV) is a system in which to correlate the biochemistry and physiology of membrane fusion. Homologues of vesicle-associated membrane protein (VAMP), syntaxin, and SNAP-25 were identified in CV membranes. A VAMP and syntaxin immunoreactive band at a higher apparent molecular mass (approximately 70 kDa)(More)