Joshua W. Fost

Learn More
We developed a multicompartmental Hodgkin-Huxley model of the Hermissenda type-B photoreceptor and used it to address the relative contributions of reductions of two K+ currents, I a and I C, to changes in cellular excitability and synaptic strength that occur in these cells after associative learning. We found that reductions of gC, the peak conductance of(More)
Because the Hermissenda eye is relatively simple and its cells well characterized, it provides an attractive preparation for detailed computational analysis. To examine the neural mechanisms of learning in this system, we developed multicompartmental models of the type-A and type-B photoreceptors, simulated the eye, and asked three questions: First, how do(More)
  • 1