Learn More
Responses to threat-related stimuli are influenced by conscious and unconscious processes, but the neural systems underlying these processes and their relationship to anxiety have not been clearly delineated. Using fMRI, we investigated the neural responses associated with the conscious and unconscious (backwardly masked) perception of fearful faces in(More)
HCN1 hyperpolarization-activated cation channels act as an inhibitory constraint of both spatial learning and synaptic integration and long-term plasticity in the distal dendrites of hippocampal CA1 pyramidal neurons. However, as HCN1 channels provide an excitatory current, the mechanism of their inhibitory action remains unclear. Here we report that HCN1(More)
Whereas recent studies have elucidated principles for representation of information within the entorhinal cortex, less is known about the molecular basis for information processing by entorhinal neurons. The HCN1 gene encodes ion channels that mediate hyperpolarization-activated currents (I(h)) that control synaptic integration and influence several forms(More)
Synaptic potentials originating at distal dendritic locations are severely attenuated when they reach the soma and, thus, are poor at driving somatic spikes. Nonetheless, distal inputs convey essential information, suggesting that such inputs may be important for compartmentalized dendritic signaling. Here we report a new plasticity rule in which(More)
In contrast to our increasingly detailed understanding of how synaptic plasticity provides a cellular substrate for learning and memory, it is less clear how a neuron's voltage-gated ion channels interact with plastic changes in synaptic strength to influence behavior. We find, using generalized and regional knockout mice, that deletion of the HCN1 channel(More)
Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited(More)
The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic(More)
BACKGROUND Molecular adaptations are believed to contribute to the mechanism of action of antipsychotic drugs (APDs). We attempted to establish common gene regulation patterns induced by chronic treatment with APDs. METHODS Gene expression analysis was performed with the Affymetrix U34A array in the frontal cortex (FC) and the striatum of rats chronically(More)
Addictive drugs such as amphetamine and cocaine stimulate the dopaminergic system, activate dopamine receptors and induce gene expression throughout the striatum. The signal transduction pathway leading from dopamine receptor stimulation at the synapse to gene expression in the nucleus has not been fully elucidated. Here, we present evidence that D1(More)
The objective of this study was to examine the relationships between continuous measures of ambulatory impairment in MS patients and their ordinal counterparts. Much of the disability caused by MS is due to ambulatory impairment. The Expanded Disability Severity Scale (EDSS) and the Ambulation Index (AI) are ordinal measures of MS severity based largely on(More)