Joshua R. Lacsina

Learn More
Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either(More)
In the malaria parasite Plasmodium falciparum, global studies of translational regulation have been hampered by the inability to isolate malaria polysomes. We describe here a novel method for polysome profiling in P. falciparum, a powerful approach which allows both a global view of translation and the measurement of ribosomal loading and density for(More)
Protein degradation is a critical factor in controlling cellular protein abundance. Here, we compare classical methods for determining protein degradation rates to a novel GFP (green fluorescent protein) fusion protein based method that assesses the intrinsic stability of cloned cDNA library products by flow cytometry [Yen et al. (2008) Science 322, 918].(More)
Oncogenic mutations in the small Ras GTPases KRas, HRas, and NRas render the proteins constitutively GTP bound and active, a state that promotes cancer. Ras proteins share ~85% amino acid identity, are activated by and signal through the same proteins, and can exhibit functional redundancy. Nevertheless, manipulating expression or activation of each isoform(More)
Nearly thirty percent of all newly synthesized polypeptides are targeted for rapid proteasome-mediated degradation. These rapidly degraded polypeptides (RDPs) are a source of antigenic substrates for the MHC class I presentation pathway, allowing for immunosurveillance of newly synthesized proteins by cytotoxic T lymphocytes. Despite the recognized role of(More)
The genetic variation responsible for the sickle cell allele (HbS) enables erythrocytes to resist infection by the malaria parasite, P. falciparum. The molecular basis of this resistance, which is known to be multifactorial, remains incompletely understood. Recent studies found that the differential expression of erythrocyte microRNAs, once translocated(More)
  • 1