Joshua Oni

  • Citations Per Year
Learn More
In a preliminary study aimed at developing strategies for the simultaneous detection of various biologically important molecules, a procedure is described that allows the electrochemical detection of nitric oxide (NO) released by a population of human umbilical vein endothelial cells (HUVEC) by using an array of electrodes comprising three individually(More)
The simultaneous detection of nitric oxide and glutamate using an array of individually addressable electrodes, in which the individual electrodes in the array were suitably modified with a highly sensitive nitric oxide sensing chemistry or a glutamate oxidase/redox hydrogel-based glutamate biosensor is presented. In a sequence of modification steps one of(More)
An array of electrodes on which cells could be grown directly was fabricated using silicon anisotropic etching and a thick-photoresist process and employed for the detection of nitric oxide (NO) released from a population of adherently growing human umbilical vein endothelial cells (HUVEC). The electrodes are tip-shaped and are 40 microm high of which only(More)
Dual Pt disk microelectrodes consisting of a 10-microm distance sensor and a 50-microm nitric oxide sensor were prepared. The 50-microm electrode was modified with Ni(4-N-tetramethyl)pyridyl porphyrin enclosed in the polymer network of a negatively charged electrodeposition paint. This paint prevented the dissolution of the otherwise soluble porphyrin in(More)
Pyrrole-functionalised tetracarboxyphenyl porphyrin and trimethoxyphenylcarboxy-phenyl porphyrin containing Ni, Mn and Pd as the central metal ion were used to modify Pt-disk microelectrodes (slashed circle 50 mum) (by repetitive cyclic voltammetry, dip-dry and pulse-amperometry methods) for the detection of nitric oxide (NO). Electrodes modified with(More)
Platinum electrodes modified with Mn(II) 5-(N-(8-pyrrole-yl-3,6-dioxa-1-aminooctane)phenylamide-10,15,20-trimethoxyphenylporphyrin (Mn(II)triOMeTCPPyP) using multi-sweep cyclic voltammetry and differential pulse amperometry were evaluated as electrocatalytic surfaces for the oxidation of nitric oxide. The electrodes modified using the pulse amperometric(More)
The properties of reagentless amperometric biosensors are mainly governed by the interaction of the used redox enzyme and the redox mediators used to facilitate the electron-transfer reaction. Both the used redox mediators and the redox enzymes differ concerning their hydrophilicity and their properties within the matrix of a carbon-paste electrode. Since(More)
  • 1