Joshua M Spurgeon

Learn More
Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array's(More)
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire(More)
A validated multi-physics numerical model that accounts for charge and species conservation, fluid flow, and electrochemical processes has been used to analyze the performance of solar-driven photoelectrochemical water-splitting systems. The modeling has provided an in-depth analysis of conceptual designs, proof-of-concepts, feasibility investigations, and(More)
Multiple arrays of Si wires were sequentially grown and transferred into a flexible polymer film from a single Si͑111͒ wafer. After growth from a patterned, oxide-coated substrate, the wires were embedded in a polymer and then mechanically separated from the substrate, preserving the array structure in the film. The wire stubs that remained were selectively(More)
WO3 is a promising candidate for a photoanode material in an acidic electrolyte, in which it is more stable than most metal oxides, but kinetic limitations combined with the large driving force available in the WO3 valence band for water oxidation make competing reactions such as the oxidation of the acid counterion a more favorable reaction. The(More)
Silicon nanorods have been grown by chemical vapor deposition of silane, using both gold and indium as catalysts for the vapor liquid solid (VLS) process. Conditions for optimal rod morphology for each catalyst were identified by varying silane partial pressure and temperature in the range P = 0.05-1 Torr and T = 300-600 C, respectively. In most cases,(More)
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for(More)
  • 1