Joshua M . Spin

Learn More
Aberrant smooth muscle cell (SMC) plasticity has been implicated in a variety of vascular disorders including atherosclerosis, restenosis, and abdominal aortic aneurysm (AAA) formation. While the pathways governing this process remain unclear, epigenetic regulation by specific microRNAs (miRNAs) has been demonstrated in SMCs. We hypothesized that additional(More)
Identification and treatment of abdominal aortic aneurysm (AAA) remains among the most prominent challenges in vascular medicine. MicroRNAs are crucial regulators of cardiovascular pathology and represent possible targets for the inhibition of AAA expansion. We identified microRNA-21 (miR-21) as a key modulator of proliferation and apoptosis of vascular(More)
MicroRNAs (miRs) regulate gene expression at the posttranscriptional level and play crucial roles in vascular integrity. As such, they may have a role in modifying abdominal aortic aneurysm (AAA) expansion, the pathophysiological mechanisms of which remain incompletely explored. Here, we investigate the role of miRs in 2 murine models of experimental AAA:(More)
RATIONALE Marfan syndrome (MFS) is a systemic connective tissue disorder notable for the development of aortic root aneurysms and the subsequent life-threatening complications of aortic dissection and rupture. Underlying fibrillin-1 gene mutations cause increased transforming growth factor-β (TGF-β) signaling. Although TGF-β blockade prevents aneurysms in(More)
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from(More)
Large-scale gene expression studies provide significant insight into genes differentially regulated in disease processes such as cancer. However, these investigations offer limited understanding of multisystem, multicellular diseases such as atherosclerosis. A systems biology approach that accounts for gene interactions, incorporates nontranscriptionally(More)
Identification and treatment of abdominal aortic aneurysm (AAA) remain among the most prominent challenges in vascular medicine. MicroRNAs (miRNAs) are crucial regulators of cardiovascular pathology and represent intriguing targets to limit AAA expansion. Here we show, by using two established murine models of AAA disease along with human aortic tissue and(More)
BACKGROUND Network analysis techniques allow a more accurate reflection of underlying systems biology to be realized than traditional unidimensional molecular biology approaches. Using gene coexpression network analysis, we define the gene expression network topology of cardiac hypertrophy and failure and the extent of recapitulation of fetal gene(More)
OBJECTIVE Mural inflammation and neovascularization are characteristic pathological features of abdominal aortic aneurysm (AAA) disease. Vascular endothelial growth factor receptor (VEGFR) expression may also mediate AAA growth and rupture. We examined VEGFR expression as a function of AAA disease progression in the Apolipoprotein E-deficient (Apo E(-/-))(More)
OBJECTIVE Phenotypic differences between vascular smooth muscle cell (VSMC) subtypes lead to diverse pathological processes including atherosclerosis, postangioplasty restenosis and vein graft disease. To better understand the molecular mechanisms underlying functional differences among distinct SMC subtypes, we compared gene expression profiles and(More)