Joshua F. Heiber

Learn More
OBJECTIVE Current treatment options for epithelial ovarian cancer are limited and therapeutic development for recurrent and drug-resistant ovarian cancer is an urgent agenda. We investigated the potential use of genetically engineered Vesicular Stomatitis Virus (VSV) to treat ovarian cancer patients who fail to respond to available therapies. Specifically,(More)
In the last decade, we have gained significant understanding of the mechanism by which vesicular stomatitis virus (VSV) specifically kills cancer cells. Dysregulation of translation and defective innate immunity are both thought to contribute to VSV oncolysis. Safety and efficacy are important objectives to consider in evaluating VSV as a therapy for(More)
Vesicular stomatitis virus (VSV), a negative-strand RNA rhabdovirus, preferentially replicates in and eradicates transformed versus nontransformed cells and is thus being considered for use as a potential anticancer treatment. The genetic malleability of VSV also affords an opportunity to develop more potent agents that exhibit increased therapeutic(More)
Vesicular stomatitis virus (VSV) infects and kills a wide range of cell types; however, the mechanisms involved in VSV-mediated cell death are not fully understood. Here we show that VSV infection interferes with mitotic progression, resulting in cell death. This effect requires the interaction of VSV matrix (M) protein with the Rae1-Nup98 complex in(More)
Eukaryotic translation initiation factor 2B (eIF2B) is a heteropentameric guanine nucleotide exchange factor that converts protein synthesis initiation factor 2 (eIF2) from a GDP-bound form to the active eIF2-GTP complex. Cellular stress can repress translation initiation by activating kinases capable of phosphorylating the alpha subunit of eIF2 (eIF2α),(More)
Oncolytic viruses, the use of viruses to treat cancer, is emerging as a new option for cancer therapy. Oncolytic viruses, of both DNA and RNA origin, exhibit the ability to preferentially replicate in and kill cancer cells plausibly due to defects in innate immune signaling or translation regulation that are acquired during cellular transformation. Here, we(More)
BACKGROUND Recombinant vesicular stomatitis virus expressing interferon-β (VSV-IFN-β) has demonstrated antitumor activity in vitro and in vivo. In preparation for clinical testing in human squamous cell carcinoma (SCC) of the head and neck, we conducted preclinical studies of VSV-IFN-β in syngeneic SCC models. METHODS In vitro, VSV-IFN-β (expressing rat(More)
  • 1