Learn More
Multiple testing is a challenging issue in genetic association studies using large numbers of single nucleotide polymorphism (SNP) markers, many of which exhibit linkage disequilibrium (LD). Failure to adjust for multiple testing appropriately may produce excessive false positives or overlook true positive signals. The Bonferroni method of adjusting for(More)
A major challenge in genome-wide association studies (GWASs) is to derive the multiple testing threshold when hypothesis tests are conducted using a large number of single nucleotide polymorphisms. Permutation tests are considered the gold standard in multiple testing adjustment in genetic association studies. However, it is computationally intensive,(More)
Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we find that topotecan, a topoisomerase 1 (TOP1) inhibitor, dose-dependently reduces the expression of extremely long genes in mouse(More)
XX female mammals undergo transcriptional silencing of most genes on one of their two X chromosomes to equalize X-linked gene dosage with XY males in a process referred to as X-chromosome inactivation (XCI). XCI is an example of epigenetic regulation. Once enacted in individual cells of the early female embryo, XCI is stably transmitted such that most(More)
The inactive X chromosome's (Xi) physical territory is microscopically devoid of transcriptional hallmarks and enriched in silencing-associated modifications. How these microscopic signatures relate to specific Xi sequences is unknown. Therefore, we profiled Xi gene expression and chromatin states at high resolution via allele-specific sequencing in mouse(More)
Repression of Xist RNA expression is considered a prerequisite to reversal of X-chromosome inactivation (XCI) in the mouse inner cell mass (ICM), and reactivation of X-linked genes is thought to follow loss of Xist RNA coating and heterochromatic markers of inactivation, such as methylation of histone H3. We analyzed X-chromosome activity in developing ICMs(More)
BACKGROUND We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP) genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. RESULTS We show that the algorithm can assign sample individuals highly(More)
Several hundred mammalian genes are expressed preferentially from one parental allele as the result of a process called genomic imprinting. Genomic imprinting is prevalent in extra-embryonic tissue, where it plays an essential role during development. Here, we profiled imprinted gene expression via RNA-Seq in a panel of six mouse trophoblast stem lines,(More)
X chromosome inactivation (XCI) reduces the number of actively transcribed X chromosomes to one per diploid set of autosomes, allowing for dosage equality between the sexes. In eutherians, the inactive X chromosome in XX females is randomly selected. The mechanisms for determining both how many X chromosomes are present and which to inactivate are unknown.(More)
Ovarian clear-cell carcinoma (OCCC) is an aggressive form of ovarian cancer with high ARID1A mutation rates. Here we present a mutant mouse model of OCCC. We find that ARID1A inactivation is not sufficient for tumour formation, but requires concurrent activation of the phosphoinositide 3-kinase catalytic subunit, PIK3CA. Remarkably, the mice develop highly(More)